File PDF .it

Condividi facilmente i tuoi documenti PDF con i tuoi contatti, il Web e i Social network.

Inviare un file File manager Cassetta degli attrezzi Ricerca PDF Assistenza Contattaci



vrbpac 12 10 20 meeting briefing document fda1 .pdf



Nome del file originale: vrbpac-12-10-20-meeting-briefing-document-fda1.pdf
Titolo: Vaccines and Related Biological Products Advisory Committee December 10, 2020 Meeting Briefing Document- FDA
Autore: FDA

Questo documento in formato PDF 1.6 è stato generato da , ed è stato inviato su file-pdf.it il 17/12/2020 alle 17:09, dall'indirizzo IP 37.159.x.x. La pagina di download del file è stata vista 249 volte.
Dimensione del file: 1.1 MB (53 pagine).
Privacy: file pubblico




Scarica il file PDF









Anteprima del documento


Vaccines and Related Biological Products Advisory Committee Meeting
December 10, 2020

FDA Briefing Document
Pfizer-BioNTech COVID-19 Vaccine

Sponsor:
Pfizer and BioNTech

Table of Contents
List of Tables ............................................................................................................................. 3
List of Figures ............................................................................................................................ 4
Glossary..................................................................................................................................... 5
1. Executive Summary ............................................................................................................... 6
2. Background ............................................................................................................................ 7
2.1. SARS-CoV-2 Pandemic ................................................................................................ 7
2.2. EUA Request for the Pfizer and BioNTech COVID-19 Vaccine BNT162b2.................... 8
2.3. U.S. Requirements to Support Issuance of an EUA for a Biological
Product ........................................................................................................................... 8
2.4. Applicable Guidance for Industry ................................................................................... 9
2.5. Safety and Effectiveness Information Needed to Support an EUA ................................. 9
2.6. Continuation of clinical trials following issuance of an EUA for a COVID19 vaccine .....................................................................................................................10
2.7. Previous Meetings of the VRBPAC to Discuss Vaccines to Prevent
COVID-19......................................................................................................................10
3. Topics for VRBPAC Discussion.............................................................................................11
4. Pfizer-BioNTech COVID-19 Vaccine (BNT162b2) .................................................................11
4.1. Vaccine Composition, Dosing Regimen........................................................................11
4.2. Proposed Use Under EUA............................................................................................12
5. FDA Review of Clinical Safety and Effectiveness Data .........................................................12
5.1. Overview of Clinical Studies .........................................................................................12
5.2. Study C4591001...........................................................................................................12
5.2.1. Design ...................................................................................................................12
5.2.2. FDA Assessment of Phase 2/3 Follow-Up Duration ...............................................17
5.2.3. Subject Disposition and Inclusion in Analysis Populations .....................................17
5.2.4. Demographics and Other Baseline Characteristics ................................................19
5.2.5. Vaccine Efficacy.....................................................................................................24
5.2.6. Safety ....................................................................................................................33
6. Sponsor’s Plans for Continuing Blinded, Placebo-Controlled Follow-Up................................44
7. Pharmacovigilance Activities .................................................................................................44
8. Benefit/Risk Assessment in the Context of Proposed Indication and Use Under
EUA .....................................................................................................................................46
8.1. Known Benefits ............................................................................................................46
8.2. Unknown Benefits/Data Gaps.......................................................................................46
8.3. Known Risks ................................................................................................................48
8.4. Unknown Risks/Data Gaps ...........................................................................................49

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

9. References ...........................................................................................................................49
10. Appendix A. Study BNT162-01............................................................................................51
11. Appendix B. Charlson Comorbidity Index ............................................................................52
12. Appendix C. Guidance for Industry: Emergency Use Authorization for
Vaccines to Prevent COVID-19 ............................................................................................53

List of Tables
Table 1: Clinical Trials Submitted in Support of Efficacy and Safety Determinations of the
Pfizer-BioNTech COVID-19 Vaccine .................................................................................12
Table 2. Efficacy Populations, Treatment Groups as Randomized ............................................18
Table 3. Disposition of All Randomized Participants, Phase 2/3 Safety Population ...................19
Table 4. Demographic Characteristics, Participants With or Without Evidence of Infection Prior
to 7 Days After Dose 2, Evaluable Efficacy (7 Days) Population .......................................20
Table 5. Demographics and Other Baseline Characteristics, Phase 2/3 Safety Population .......21
Table 6. Final Analysis of Efficacy of BNT162b2 Against Confirmed COVID-19 From 7 Days
After Dose 2 in Participants Without Evidence of Prior SARS-CoV-2 Infection - Evaluable
Efficacy Population ...........................................................................................................24
Table 7. Efficacy of BNT162b2 Against Confirmed COVID-19 From 7 Days After Dose 2 in
Participants With And Without Evidence of Prior SARS-CoV-2 Infection, Evaluable Efficacy
Population .........................................................................................................................25
Table 8: Subgroup Analyses of Second Primary Endpoint: First COVID-19 Occurrence From 7
Days After Dose 2, by Subgroup, Participants With and Without Evidence of Infection Prior
to 7 Days After Dose 2, Evaluable Efficacy (7 Days) Population .......................................26
Table 9. Demographic Characteristics, Participants With Protocol Defined Case (Without
Evidence of Infection Prior to 7 Days After Dose 2)...........................................................28
Table 10. Vaccine Efficacy: First COVID-19 Occurrence From 7 Days After Dose 2, by
Comorbidity Status, Among Participants Without Evidence of Infection Prior to 7 Days After
Dose 2, Evaluable Efficacy (7 Days) Population ...............................................................29
Table 11. First Severe COVID-19 Occurrence from 7 Days after Dose 2 - Evaluable Efficacy
Population .........................................................................................................................31
Table 12. First Severe COVID-19 Occurrence After Dose 1 – Dose 1 All-Available Efficacy
Population .........................................................................................................................31
Table 13. Primary Efficacy Endpoint –All-Available Efficacy Population ....................................32
Table 14. Study C4591001 Safety Overview- Ages 16 years and older ....................................33
Table 15. Frequency of Solicited Local Reactions Within 7 Days After Each Vaccination,
Reactogenicity Subset of the Phase 2/3 Safety Population*, 18 to 55 Years of Age..........34
Table 16. Frequency of Solicited Local Reactions Within 7 Days After Each Vaccination,
Reactogenicity Subset of the Phase 2/3 Safety Population*, >55 Years of Age and Older 35
Table 17. Frequency of Solicited Systemic Adverse Events Within 7 Days After Each
Vaccination- Reactogenicity Subset of the Phase 2/3 Safety Population*, 18 to 55 Years of
Age ...................................................................................................................................35

3

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Table 18. Frequency of Solicited Systemic Adverse Events Within 7 Days After Each
Vaccination- Reactogenicity Subset of the Phase 2/3 Safety Population*, >55 Years of Age
and Older ..........................................................................................................................37
Table 19. Frequency of Unsolicited AEs with Occurrence in ≥1% of Participants in any
Treatment Group from Dose 1 to 1-month After Dose 2, Phase 2/3 Safety Population*, 16
Years of Age and Older.....................................................................................................39
Table 20. Frequency of Unsolicited AEs with Occurrence in ≥1% of Participants in any
Treatment Group from Dose 1 to 1 Month After Dose 2, Phase 2/3 Safety Population*, 16
and 17 Years of Age .........................................................................................................39
Table 21. Frequency of Unsolicited AEs with Occurrence in ≥1% of Participants in any
Treatment Group from Dose 1 to 1 Month After Dose 2, Phase 2/3 Safety Population*, 65
Years and Older ................................................................................................................40
List of Figures
Figure 1. Safety Monitoring Plan, Study C4591001 ...................................................................15
Figure 2. Cumulative Incidence Curves for the First COVID-19 Occurrence After Dose 1, Dose 1
All-Available Efficacy Population .......................................................................................30

4

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Glossary
AE
AIDS
ARDS
BNT162b2
CBRN
CDC
CMC
EUA
FDA
hACE2
HHS
HIV
IM
LNP
MERS-CoV
modRNA
NAAT
PVP
RBD
RT-PCR
SAE
SARS-CoV-2
VE
VRBPAC

adverse event
acquired immunodeficiency syndrome
acute respiratory distress syndrome
Pfizer-BioNTech COVID-19 Vaccine
chemical, biological, radiological, or nuclear
Centers for Disease Control and Prevention
Che
Emergency Use Authorization
Food and Drug Administration
human angiotensin converting enzyme 2
Health and Human Services
human immunodeficiency virus
intramuscular
lipid nanoparticle
Middle Eastern respiratory syndrome
nucleoside-modified messenger RNA
nucleic acid amplification-based test
Pharmacovigilance Plan
receptor binding domain
reverse transcription-polymerase chain reaction
serious adverse event
severe acute respiratory syndrome coronavirus 2
vaccine efficacy
Vaccines and Related Biological Products Advisory Committee

5

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

1. Executive Summary
On November 20, 2020, Pfizer and BioNTech (the Sponsor) submitted an Emergency Use
Authorization (EUA) request to FDA for an investigational COVID-19 vaccine (BNT162b2)
intended to prevent COVID-19 caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The vaccine is based on the SARS-CoV-2 spike glycoprotein (S) antigen
encoded by RNA and formulated in lipid nanoparticles (LNPs). The proposed use under an EUA
is “for active immunization for the prevention of COVID-19 caused by SARS-CoV-2 in
individuals 16 years of age and older.” The proposed dosing regimen is 2 doses, 30 µg each,
administered 21 days apart.
The EUA request includes safety and efficacy data from an ongoing phase 3 randomized,
double-blinded and placebo-controlled trial of BNT162b2 in approximately 44,000 participants.
The primary efficacy endpoint is incidence of COVID-19 among participants without evidence of
SARS-CoV-2 infection before or during the 2-dose vaccination regimen. In a mid-November
analysis of 36,621 participants randomized 1:1 to vaccine or placebo who were included in the
per-protocol efficacy analysis population of participants without evidence of SARS-CoV-2
infection prior to 7 days after completion of the vaccination regimen, efficacy in preventing
confirmed COVID-19 occurring at least 7 days after the second dose of vaccine was 95.0%,
with 8 COVID-19 cases in the vaccine group and 162 COVID-19 cases in the placebo group.
Subgroup analyses of the primary efficacy endpoint showed similar efficacy point estimates
across age groups, genders, racial and ethnic groups, and participants with medical
comorbidities associated with high risk of severe COVID-19. Secondary efficacy analyses
suggested benefit of the vaccine in preventing severe COVID-19, in preventing COVID-19
following the first dose, and in preventing COVID-19 in individuals with prior SARS-CoV-2
infection, although available data for these outcomes did not allow for firm conclusions.
Safety data from approximately 38,000 participants ≥16 years of age randomized 1:1 to vaccine
or placebo with a median of 2 months of follow up after the second dose suggest a favorable
safety profile, with no specific safety concerns identified that would preclude issuance of an
EUA. Available safety data from all participants enrolled through the November 14, 2020 data
cut-off (N=43,252, which includes late enrollment of additional adolescent and adult
participants), was consistent with the safety profile for the approximately 38,000 participants
with median follow-up of 2 months and also did not raise specific safety concerns. The most
common solicited adverse reactions were injection site reactions (84.1%), fatigue (62.9%),
headache (55.1%), muscle pain (38.3%), chills (31.9%), joint pain (23.6%), fever (14.2%);
severe adverse reactions occurred in 0.0% to 4.6% of participants, were more frequent after
Dose 2 than after Dose 1, and were generally less frequent in participants ≥55 years of age (≤
2.8%) as compared to younger participants (≤4.6%). The frequency of serious adverse events
was low (<0.5%), without meaningful imbalances between study arms. Among non-serious
unsolicited adverse events, there was a numerical imbalance of four cases of Bell’s palsy in the
vaccine group compared with no cases in the placebo group, though the four cases in the
vaccine group do not represent a frequency above that expected in the general population.
Otherwise, there were no notable patterns or numerical imbalances between treatment groups
for specific categories of non-serious adverse events (including other neurologic, neuroinflammatory, and thrombotic events) that would suggest a causal relationship to BNT162b2
vaccine. With the exception of more frequent, generally mild to moderate reactogenicity in
participants <55 years of age, the safety profile of BNT162b2 was generally similar across age
groups, genders, ethnic and racial groups, participants with or without medical comorbidities,
and participants with or without evidence of prior SARS-CoV-2 infection at enrollment.
6

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

This meeting of the Vaccines and Related Biological Products Advisory Committee (VRBPAC)
is being convened to discuss and provide recommendations on whether:



based on the totality of scientific evidence available, it is reasonable to believe that the
Pfizer-BioNTech COVID-19 Vaccine may be effective in preventing COVID-19 in
individuals 16 years of age and older, and
the known and potential benefits of the Pfizer-BioNTech COVID-19 Vaccine outweigh its
known and potential risks for use in individuals 16 years of age and older.

The committee will also discuss what additional studies should be conducted by the vaccine
manufacturer following issuance of the EUA to gather further data on the safety and
effectiveness of this vaccine.

2. Background
2.1. SARS-CoV-2 Pandemic
The SARS-CoV-2 pandemic presents an extraordinary challenge to global health and, as of
November 30, 2020, has caused more than 60 million cases of COVID-19 and claimed the lives
of 1.5 million people worldwide. In the United States, over 13 million cases have been reported
to the Centers for Disease Control and Prevention (CDC), with over 260,000 deaths. Confirmed
cases and mortality continue to rise globally. On January 31, 2020, the U.S. Secretary of Health
and Human Services (HHS) declared a public health emergency related to COVID-19 and
mobilized the Operating Divisions of HHS. Following the World Health Organization’s
declaration of the novel coronavirus pandemic on March 11, 2020, the U.S. President declared
a national emergency in response to COVID-19 on March 13, 2020. Vaccines to protect against
COVID-19 are critical to mitigate the current SARS-CoV-2 pandemic and to prevent future
disease outbreaks.
SARS-CoV-2 is a novel, zoonotic coronavirus that emerged in late 2019 in patients with
pneumonia of unknown cause.1 The virus was named SARS-CoV-2 because of its similarity to
the coronavirus responsible for severe acute respiratory syndrome (SARS-CoV, a lineage B
betacoronavirus).2 SARS-CoV-2 is an enveloped, positive sense, single stranded RNA virus
sharing more than 70% of its sequence with SARS-CoV, and ~50% with the coronavirus
responsible for Middle Eastern respiratory syndrome (MERS-CoV).3 The SARS-CoV-2 spike
glycoprotein (S), which is a main target for neutralizing antibody, binds to its receptor human
angiotensin converting enzyme 2 (hACE2) to initiate infection.4 SARS-CoV-2 is the cause of
COVID-19, an infectious disease with respiratory and systemic manifestations. Disease
symptoms vary, with many persons presenting with asymptomatic or mild disease and some
progressing to severe respiratory tract disease including pneumonia and acute respiratory
distress syndrome (ARDS), leading to multiorgan failure and death.
In an attempt to prevent the spread of disease and to control the pandemic, numerous COVID19 vaccine candidates are in development. These vaccines are based on different platforms
including mRNA and DNA technologies and include viral vectored, subunit, inactivated, and live
attenuated vaccines. Most COVID-19 candidate vaccines express the spike protein or parts of
the spike protein, i.e., the receptor binding domain (RBD), as the immunogenic determinant.

7

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

2.2. EUA Request for the Pfizer and BioNTech COVID-19 Vaccine BNT162b2
Pfizer, in partnership with BioNTech Manufacturing GmbH, is developing a vaccine to prevent
COVID-19 which is based on the SARS-CoV-2 spike glycoprotein (S) antigen encoded by RNA
and formulated in lipid nanoparticles (LNP). The Pfizer-BioNTech COVID-19 Vaccine (also
referred to as BNT162b2) is administered intramuscularly as a 2-dose series spaced 21 days
apart at a dose of 30 µg each. The vaccine is supplied as a multi-dose vial (5 doses) containing
a frozen suspension (-80°C to -60°C) of BNT162b2 that must be thawed and diluted with 1.8 mL
of sterile 0.9% sodium chloride, allowing for five 0.3 mL doses. The vaccine is preservative free.
A phase 3 randomized and placebo-controlled trial using BNT162b2 in approximately 44,000
participants is currently ongoing to evaluate the vaccine’s safety and efficacy. Vaccine efficacy
for the primary endpoint against confirmed COVID-19 occurring at least 7 days after the second
dose was 95.0% with 8 COVID-19 cases in the vaccine group compared to 162 COVID-19
cases in the placebo group. Data from about 38,000 participants randomized 1:1 with a median
of 2 months of follow-up after the second dose of vaccine showed a favorable safety profile at a
dose of 30 µg in participants 16 years of age and older. On November 20, 2020, Pfizer and
BioNTech submitted an EUA request to FDA for its investigational COVID-19 vaccine
(BNT162b2) intended to prevent COVID-19 caused by SARS-CoV-2.

2.3. U.S. Requirements to Support Issuance of an EUA for a Biological Product
Based on the declaration by the Secretary of HHS that the COVID-19 pandemic constitutes a
public health emergency with a significant potential to affect national security or the health and
security of United States citizens living abroad, FDA may issue an EUA after determining that
certain statutory requirements are met (section 564 of the FD&C Act (21 U.S.C. 360bbb-3)).5
• The chemical, biological, radiological, or nuclear (CBRN) agent referred to in the March 27,
2020 EUA declaration by the Secretary of HHS (SARS-CoV-2) can cause a serious or lifethreatening disease or condition.
• Based on the totality of scientific evidence available, including data from adequate and wellcontrolled trials, if available, it is reasonable to believe that the product may be effective to
prevent, diagnose, or treat such serious or life-threatening disease or condition that can be
caused by SARS-CoV-2, or to mitigate a serious or life-threatening disease or condition
caused by an FDA-regulated product used to diagnose, treat, or prevent a disease or
condition caused by SARS-CoV-2.
• The known and potential benefits of the product, when used to diagnose, prevent, or treat
the identified serious or life-threatening disease or condition, outweigh the known and
potential risks of the product.
• There is no adequate, approved, and available alternative to the product for diagnosing,
preventing, or treating the disease or condition.
If these criteria are met, under an EUA, FDA can allow unapproved medical products (or
unapproved uses of approved medical products) to be used in an emergency to diagnose, treat,
or prevent serious or life-threatening diseases or conditions caused by threat agents. FDA has
been providing regulatory advice to COVID-19 vaccine manufacturers regarding the data
needed to determine that a vaccine’s benefit outweigh its risks. This includes demonstrating that
manufacturing information ensures product quality and consistency along with data from at least
one phase 3 clinical trial demonstrating a vaccine’s safety and efficacy in a clear and compelling
manner.
8

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

In the event an EUA is issued for this product, it would still be considered unapproved and it
would be under further investigation (under an Investigational New Drug Application) until it is
licensed under a Biologics License Application (BLA). Licensure of a COVID-19 vaccine will be
based on review of additional manufacturing, efficacy, and safety data, providing greater
assurance of the comparability of licensed product to product tested in the clinical trials, greater
assurance of safety based on larger numbers of vaccine recipients who have been followed for
a longer period of time, and additional information about efficacy that addresses, among other
questions, the potential for waning of protection over time.

2.4. Applicable Guidance for Industry
Risk and benefit considerations are unique for COVID-19 vaccines, given that an EUA may be
requested to allow for a vaccine’s rapid and widespread deployment for administration to
millions of individuals, including healthy people. FDA published in October 2020 guidance for
industry entitled “Emergency Use Authorization for Vaccines to Prevent COVID-19” (Appendix
C, page 53) describing FDA’s current recommendations regarding the manufacturing,
nonclinical, and clinical data and information needed under section 564 of the FD&C Act to
support the issuance of an EUA for an investigational vaccine to prevent COVID-19, including a
discussion of FDA’s current thinking regarding the circumstances under which an EUA for a
COVID-19 vaccine would be appropriate.

2.5. Safety and Effectiveness Information Needed to Support an EUA
Effectiveness data
Issuance of an EUA requires a determination that the known and potential benefits of the
vaccine outweigh the known and potential risks. For a preventive COVID-19 vaccine to be
potentially administered to millions of individuals, including healthy individuals, data adequate to
inform an assessment of the vaccine’s benefits and risks and support issuance of an EUA would
include meeting the prespecified success criteria for the study’s primary efficacy endpoint, as
described in the guidance for industry entitled “Development and Licensure of Vaccines to
Prevent COVID-19” (i.e., a point estimate for a placebo-controlled efficacy trial of at least 50%,
with a lower bound of the appropriately alpha-adjusted confidence interval around the primary
efficacy endpoint point estimate of >30%).6
Safety data
An EUA request for a COVID-19 vaccine should include all safety data accumulated from
studies conducted with the vaccine, with data from phase 1 and 2 focused on serious adverse
events, adverse events of special interest, and cases of severe COVID-19 among study
participants. Phase 3 safety data should include characterization of reactogenicity (common and
expected adverse reactions shortly following vaccination) in a sufficient number of participants
from relevant age groups and should include a high proportion of enrolled participants
(numbering well over 3,000) followed for serious adverse events and adverse events of special
interest for at least one month after completion of the full vaccination regimen. The phase 1 and
2 safety data likely will be of a longer duration than the available safety data from the phase 3
trial at the time of submission of an EUA request and thus, are intended to complement the
available data from safety follow-up from ongoing phase 3 studies.

9

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Phase 3 Follow-up
Data from phase 3 studies should include a median follow-up duration of at least 2 months after
completion of the full vaccination regimen to help provide adequate information to assess a
vaccine’s benefit-risk profile. From a safety perspective, a 2-month median follow-up following
completion of the full vaccination regimen will allow identification of potential adverse events
that were not apparent in the immediate postvaccination period. Adverse events considered
plausibly linked to vaccination generally start within 6 weeks of vaccine receipt.7 Therefore, a 2month follow-up period may allow for identification of potential immune-mediated adverse
events that began within 6 weeks of vaccination. From the perspective of vaccine efficacy, it is
important to assess whether protection mediated by early responses has not started to wane. A
2-month median follow-up is the shortest follow-up period to achieve some confidence that any
protection against COVID-19 is likely to be more than short-lived. The EUA request should
include a plan for active follow-up for safety (including deaths, hospitalizations, and other
serious or clinically significant adverse events) among individuals administered the vaccine
under an EUA in order to inform ongoing benefit-risk determinations to support continuation of
the EUA.

2.6. Continuation of clinical trials following issuance of an EUA for a COVID-19
vaccine
FDA does not consider availability of a COVID-19 vaccine under EUA, in and of itself, as
grounds for immediately stopping blinded follow-up in an ongoing clinical trial or grounds for
offering vaccine to all placebo recipients. To minimize the risk that use of an unapproved
vaccine under EUA will interfere with long-term assessment of safety and efficacy in ongoing
trials, it is critical to continue to gather data about the vaccine even after it is made available
under EUA. An EUA request should therefore include strategies that will be implemented to
ensure that ongoing clinical trials of the vaccine are able to assess long-term safety and efficacy
(including evaluating for vaccine-associated enhanced respiratory disease and decreased
effectiveness as immunity wanes over time) in sufficient numbers of participants to support
vaccine licensure. These strategies should address how ongoing trial(s) will handle loss of
follow-up information for study participants who choose to withdraw from the study in order to
receive the vaccine under an EUA.
FDA is aware that some COVID-19 vaccine developers may wish to immediately unblind their
trials upon issuance of an EUA in order to rapidly provide vaccine to trial participants who
received placebo. Some developers have proposed maintaining blinding in a crossover design
that provides vaccine to previous placebo recipients and placebo to previous vaccine recipients.
Such strategies would impact collection of longer-term placebo-controlled safety data and
evaluation of the duration of vaccine efficacy. Ethical and scientific issues associated with
offering vaccination to placebo recipients have been discussed in recent statements and
articles.8-10

2.7. Previous Meetings of the VRBPAC to Discuss Vaccines to Prevent COVID-19
On October 22, 2020, the VRBPAC met in open session, to discuss, in general, the
development, authorization and/or licensure of vaccines to prevent COVID-19. No specific
application was discussed at this meeting. Topics discussed at the meeting included:
• FDA’s approach to safety and effectiveness, and chemistry, manufacturing and control
(CMC) data as outlined in the respective guidance documents
10

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document




Considerations for continuation of blinded Phase 3 clinical trials if an EUA has been
issued for an investigational COVID-19 vaccine
Studies following licensure and/or issuance of an EUA for COVID-19 vaccines to:
o Further evaluate safety, effectiveness and immune markers of protection
o Evaluate the safety and effectiveness in specific populations.

3. Topics for VRBPAC Discussion
The Vaccines and Related Biological Products Advisory Committee will convene on December
10, 2020, to discuss and provide recommendations on whether:



based on the totality of scientific evidence available, it is reasonable to believe that the
Pfizer-BioNTech COVID-19 Vaccine may be effective in preventing COVID-19 in
individuals 16 years of age and older, and
the known and potential benefits of the Pfizer-BioNTech COVID-19 Vaccine outweigh its
known and potential risks for use in individuals 16 years of age and older.

The committee will also discuss what additional studies should be conducted by the vaccine
manufacturer following issuance of the EUA to gather further data on the safety and
effectiveness of this vaccine.

4. Pfizer-BioNTech COVID-19 Vaccine (BNT162b2)
4.1. Vaccine Composition, Dosing Regimen
The Pfizer-BioNTech COVID-19 Vaccine is a white to off-white, sterile, preservative-free, frozen
suspension for intramuscular injection. The vaccine contains a nucleoside-modified messenger
RNA (modRNA) encoding the viral spike glycoprotein (S) of SARS-CoV-2. The vaccine also
includes the following ingredients: lipids ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2hexyldecanoate), 2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide, 1,2-distearoyl-snglycero-3-phosphocholine, and cholesterol), potassium chloride, monobasic potassium
phosphate, sodium chloride, dibasic sodium phosphate dihydrate, and sucrose.
The Pfizer-BioNTech COVID-19 Vaccine is supplied as a frozen [between -80°C to -60°C (112°F to -76°F)] multi-dose (5-dose) vial. The vaccine must be thawed and diluted in its original
vial with 1.8 mL of sterile 0.9% Sodium Chloride Injection, USP prior to administration. After
dilution, the vial contains 5 doses of 0.3 mL per dose. After dilution, the multiple-dose vials must
be stored between 2°C to 25°C (35°F to 77°F) and used within 6 hours from the time of dilution.
The Pfizer-BioNTech COVID-19 Vaccine, BNT162b2 (30 μg), is administered intramuscularly
(IM) as a series of two 30 μg doses (0.3 mL each) 21 days apart.
FDA has reviewed the CMC data submitted to date for this vaccine and has determined that the
CMC information is consistent with the recommendations set forth in FDA’s Guidance on
Emergency Use Authorization for Vaccines to Prevent COVID-19. As such, FDA has
determined that the Sponsor has provided adequate information to ensure the vaccine’s quality
and consistency for authorization of the product under an EUA.

11

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

4.2. Proposed Use Under EUA
The proposed indication and use of the vaccine under an EUA is “for active immunization for the
prevention of COVID-19 caused by SARS-CoV-2 in individuals 16 years of age and older.”

5. FDA Review of Clinical Safety and Effectiveness Data
5.1. Overview of Clinical Studies
Data from two ongoing clinical studies were included in the EUA request, which are summarized
in Table 1 below. Study C4591001 is a multi-center, multi-national Phase 1,2,3 randomized,
blinded, placebo-controlled safety, immunogenicity, and efficacy study that is the focus of the
EUA review. Study BNT162-01 is a Phase 1 study that explored various vaccine candidates and
dose levels and will not be discussed in detail. A brief summary of the BNT162-01 study design
and results to date is found in Appendix A, page 51.
Table 1: Clinical Trials Submitted in Support of Efficacy and Safety Determinations of the
Pfizer-BioNTech COVID-19 Vaccine
BNT162b2 (30 µg)* Placebo
Study Number/
participants
participants
Study
Country
Description
(N)
(N)
Status
C4591001
Phase 1,2,3 randomized,
USA, Argentina, placebo-controlled, observerPhase 1: 24
Phase 1: 6
Brazil, Germany, blind; to evaluate safety,
Ongoing
Phase 2/3: 21823
Phase 2/3: 21828
S. Africa, Turkey immunogenicity and efficacy of
COVID-19 vaccine
BNT162-01
Phase 1/2 randomized, openGermany
label; to evaluate safety and
12
0
Ongoing
immunogenicity, dose escalation
N= total number of randomized participants as of November 14, 2020. Placebo: saline.
*Phase 1 studies included additional participants vaccinated with other dose levels and other mRNA vaccine candidates.
Studies C4591001 and BNT162-01 started in April 2020 (first participant, first visit).

5.2. Study C4591001
5.2.1. Design
Study C4591001 is an ongoing, randomized, placebo-controlled, phase 1/2/3 study being
conducted in the US, Argentina, Brazil, Germany, South Africa and Turkey. Initially the study
was designed as a phase 1/2 study in healthy adults in the US for vaccine candidate and
dosage selection, immunogenicity and preliminary efficacy, but the protocol was revised to
expand the study design for inclusion of a phase 2/3 portion to evaluate clinical disease
endpoint efficacy in individuals 12 years of age and older in the US and additional sites outside
of the US.
In phase 1, two age groups were evaluated in separate cohorts, younger participants 18 through
55 years of age (N=45) and older participants 65 through 85 years of age (N=45). The study
population included healthy men and women and excluded participants at high risk of SARSCoV-2 infection or with serological evidence of prior or current SARS-CoV-2 infection. Two
different vaccine candidates were evaluated, and younger participants received escalating dose
levels with progression to subsequent dose levels and evaluation of escalating dose levels in
the older age group (65 through 85 years), based on recommendations from an internal review
committee that reviewed safety and immunogenicity data. For each vaccine candidate and dose
12

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

level, participants were randomized 4:1, such that 12 participants received the vaccine
candidate and 3 participants received placebo. Review of the safety and immunogenicity from
phase 1, in combination with data from Study BNT162-01 (See Section 10), supported the final
vaccine candidate and dose level (BNT162b2 at 30 µg, given 21 days apart) to proceed into
phase 2/3.
In phase 2/3, participants were enrolled with stratification by age (younger adults: 18 through 55
years of age; older adults: over 55 years of age) and a goal of 40% enrollment in the older adult
age group. Adolescents were added to the protocol, based on review of safety data in younger
adults enrolled in the ongoing study, so the age strata were revised as follows: 12 through 15
years of age, 16 through 54 years of age, and 55 years of age and older. The study population
for phase 2/3 includes participants at higher risk for acquiring COVID-19 and at higher risk of
severe COVID-19 disease, such as participants working in the healthcare field, participants with
autoimmune disease, and participants with chronic but stable medical conditions such as
hypertension, asthma, diabetes, and infection with HIV, hepatitis B or hepatitis C. Participants
were randomized 1:1 to receive 2 doses of either BNT162b2 or placebo, 21 days apart. The
phase 2 portion of the study evaluated reactogenicity and immunogenicity for 360 participants
enrolled early-on, and these participants also contribute to the overall efficacy and safety data in
the phase 3 portion. The ongoing phase 3 portion of the study is evaluating the safety and
efficacy of BNT162b2 for the prevention of COVID-19 disease occurring at least 7 days after the
second dose of vaccine. Efficacy is being assessed throughout a participant’s follow-up in the
study through surveillance for potential cases of COVID-19. If, at any time, a participant
develops acute respiratory illness, an illness visit occurs. Assessments for illness visits include a
nasal (midturbinate) swab, which is tested at a central laboratory using a reverse transcriptionpolymerase chain reaction (RT-PCR) test (e.g., Cepheid; FDA authorized under EUA), or other
sufficiently validated nucleic acid amplification-based test (NAAT), to detect SARS-CoV-2. The
central laboratory NAAT result is used for the case definition, unless it is not possible to test the
sample at the central laboratory. In that case, the following NAAT results are acceptable:
Cepheid Xpert Xpress SARS-CoV-2Roche cobas SARS-CoV-2 real-time RT-PCR test
(EUA200009/A001) Abbott Molecular/RealTime SARS-CoV-2 assay (EUA200023/A001).
The study design includes planned interim analyses of the first primary efficacy endpoint at prespecified numbers of COVID-19 cases (at least 62, 92, and 120 cases), and all primary and
secondary efficacy endpoints were analyzed in the final efficacy analysis after at least 164
COVID-19 cases were accrued (see Statistical Analysis section, below). Participants are
expected to participate for a maximum of approximately 26 months.
Primary Efficacy Endpoints
Study C4591001 has two primary endpoints:
First primary endpoint: COVID-19 incidence per 1000 person-years of follow-up in participants
without serological or virological evidence of past SARS-CoV-2 infection before and during
vaccination regimen – cases confirmed ≥7 days after Dose 2
Second primary endpoint: COVID-19 incidence per 1000 person-years of follow-up in
participants with and without evidence of past SARS-CoV-2 infection before and during
vaccination regimen – cases confirmed ≥7 days after Dose 2
Secondary Efficacy Endpoints
Study C4591001 has secondary endpoints based on different approaches to COVID-19 case
evaluation criteria as follows:
13

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

COVID-19 confirmed at least 14 days after Dose 2: COVID-19 incidence per 1000 personyears of follow up in participants either (1) without or (2) with and without serological or
virological evidence of past SARS-CoV-2 infection before and during vaccination regimen –
cases confirmed ≥14 days after Dose 2
Severe COVID-19: incidence per 1000 person-years of follow-up in participants either
(1) without or (2) with and without evidence of past SARS-CoV-2 infection before and during
vaccination regimen – cases confirmed either (1) ≥7 days after Dose 2 or (2) ≥14 days after
Dose 2
CDC-defined COVID-19: incidence per 1000 person-years of follow-up in participants either (1)
without or (2) with and without evidence of past SARS-CoV-2 infection before and during
vaccination regimen – cases confirmed either (1) ≥7 days after Dose 2 or (2) ≥14 days after
Dose 2.
For the primary efficacy endpoint, the case definition for a confirmed COVID-19 case was the
presence of at least one of the following symptoms and a positive SARS-CoV-2 NAAT within 4
days of the symptomatic period:










Fever;
New or increased cough;
New or increased shortness of breath;
Chills;
New or increased muscle pain;
New loss of taste or smell;
Sore throat;
Diarrhea;
Vomiting.

For a secondary efficacy endpoint, a second definition, which may be updated as more is
learned about COVID-19, included the following additional symptoms defined by CDC (listed at
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html):





Fatigue;
Headache;
Nasal congestion or runny nose;
Nausea.

For another secondary endpoint, the case definition for a severe COVID-19 case was a
confirmed COVID-19 case with at least one of the following:







Clinical signs at rest indicative of severe systemic illness (RR ≥30 breaths per minute,
HR ≥125 beats per minute, SpO2 ≤93% on room air at sea level, or PaO2/FiO2 <300
mm Hg);
Respiratory failure (defined as needing high-flow oxygen, noninvasive ventilation,
mechanical ventilation, or ECMO);
Evidence of shock (SBP <90 mm Hg, DBP <60 mm Hg, or requiring vasopressors)
Significant acute renal, hepatic, or neurologic dysfunction;
Admission to an ICU;
Death.

14

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Evaluation of Safety
The primary safety objective for all phases was to describe the safety of BNT162 vaccine(s) in
healthy adults after 1 or 2 doses. All phase 1 participants (n=30), and then 6653 U.S.
participants (360 phase 2, 6293 phase 3) and the first ~500 phase 3 participants/per country
with enrollment through October 9, 2020 (Argentina, Brazil and South Africa) recorded local
reactions, systemic events, and antipyretic/pain medication usage from Day 1 through Day 7
after each dose. Unsolicited adverse events (AEs) are collected from Dose 1 to 1 month after
the last dose and serious AEs (SAEs) from Dose 1 to 6 months after the last dose. Figure 1
below shows the study safety monitoring plan.
Figure 1. Safety Monitoring Plan, Study C4591001

Reactogenicity assessments included solicited injection site reactions (pain, redness, swelling)
and systemic AEs (fever, fatigue, headache, chills, vomiting, diarrhea, new or worsened muscle
pain, and new or worsened joint pain), and antipyretic/pain medication use were recorded in an
e-diary. At the data cutoff date for the EUA, reactogenicity events were not collected from
adolescents 16 to 17 years of age (enrolled prior to the implementation of Protocol Amendment
9, finalized on 29 October 2020) using an e-diary but were detected and reported as unsolicited
AEs. For any phase 3 participants who were not in the reactogenicity subset, local reactions and
systemic events consistent with reactogenicity were detected and reported as unsolicited AEs.
HIV-positive participants and adolescents 12 through 15 years of age were included in the
reactogenicity subset with implementation of protocol amendment 6 (finalized on September 8,
2020) and amendment 7 (finalized on October 6, 2020), respectively. Solicited reactogenicity
data in adolescents 16-17 years of age are not available for the reporting period. Reactogenicity
data from a total of 100 adolescents 12 through 15 years of age enrolled in C4591001 phase
2/3 were provided in the EUA submission. However, the Sponsor did not request inclusion of
this age group in the EUA because the available data, including number of participants and
follow-up duration, were insufficient to support favorable a benefit-risk determination at this time.
Therefore, the reactogenicity data for participants 12 through 15 years of age are not presented
in this document.
Clinical laboratory tests were assessed in phase 1 at 1-week postvaccination. The planned
safety follow-up for currently enrolled adolescents and adults is through 24 months after
vaccination #2.
15

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Potential COVID-19 illnesses and their sequelae were not to be reported as AEs, with the
exception of illnesses that met regulatory criteria for seriousness and were not confirmed to be
COVID-19. These illnesses were evaluated and reported as SAEs.
In phase 2/3, monitoring for risk of vaccine-enhanced disease was performed by an unblinded
team supporting the Data Monitoring Committee that reviewed cases of severe COVID-19 as
they were received and reviewed AEs at least weekly for additional potential cases of severe
COVID-19. The stopping rule was triggered when the 1-sided probability of observing the same
or a more extreme case split was 5% or less when the true incidence of severe disease was the
same for vaccine and placebo participants, and alert criteria were triggered when this probability
was less than 11%.
Analysis Populations
For the purposes of analysis, the following populations are defined:
Population
Enrolled
Randomized
Evaluable efficacy

All-available efficacy

Description
All participants who have a signed informed consent document.
All participants who are assigned a randomization number.
All eligible randomized participants who receive all vaccination(s) as
randomized within the predefined window and have no other important
protocol deviations as determined by the clinician.
1. All randomized participants who receive at least 1 vaccination.
2. All randomized participants who complete 2 vaccination doses.

Phase 2/3 safety analysis populations were as follows:


Phase 2/3 all-enrolled population: composed of a total of 43,448 (21720 vaccine, 21728
placebo) participants >16 years of age, regardless of duration of follow-up, for whom
written informed consent was obtained. Initial enrollment included individuals 18 years
and older, then included individuals as young as 16 years of age and individuals with
known HIV (protocol amendment 6; finalized on September 8, 2020). As of November
14, 2020, 43.9% and 79.5% of vaccine recipients completed at least 2 months (>8
weeks) and at least 1 month (>4 weeks), respectively, of safety follow-up after Dose 2.
The percentages of placebo recipients completing at least 2 months (>8 weeks) and at
least 1 month (>4 weeks) were similar to the vaccine group.



Phase 2/3 safety population (median follow-up time of 2 months after vaccination #2):
comprised of a total of 37586 (18801 vaccine,18785 placebo) participants >16 years of
age enrolled by October 9, 2020 and received at least 1 dose of study vaccine or
placebo; overall, 98.1% of participants completed the 2-dose series. As of November 14,
2020, 50.6% and 91.6% of vaccine recipients completed at least 2 months (>8 weeks)
and at least 1 month (>4 weeks), respectively, of safety follow-up after Dose 2. The
percentages of placebo recipients completing at least 2 months (>8 weeks) and at least
1 month (>4 weeks) were similar to the vaccine group. A total of 283 (138 vaccine,145
placebo) individuals were 16 to <18 years of age. HIV-positive individuals were included
in the all-enrolled population, but not the phase 2/3 safety population because the
number of participants enrolled by October 9, 2020 was small (n=120) and the median
duration of safety follow-up was short.
16

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

5.2.2. FDA Assessment of Phase 2/3 Follow-Up Duration
Study C4591001 initially enrolled approximately 30,000 participants and then several months
later began enrollment of approximately 14,000 additional participants, including adolescents
and participants with chronic, stable HIV, hepatitis B, or hepatitis C infections. Because of the
gap in enrollment, the entire enrolled study population had a median follow-up of less than 2
months as of the EUA submission data cut-off date of November 14, 2020. However, the
analyses submitted to support this EUA request meet the expectation for median duration of
follow-up time, as follows:


Submitted safety analyses for participants enrolled through October 9, 2020, and
followed through November 14, 2020 (referred to by Pfizer and in this document as the
phase 2/3 safety population and including a total of 37,586 participants), represent a
median follow-up of 2 months. Additionally, this safety database is larger than for the
initial planned enrollment of approximately 30,000 participants.



The date for data cut-off for the first interim analysis for efficacy was November 4, 2020,
when a total of 94 confirmed COVID-19 cases were accrued. All of the participants
included in the first interim efficacy analysis had at least 7 days of follow-up after Dose 2,
and thus were enrolled no later than October 7, 2020. All participants in the first interim
efficacy analysis were therefore included in the phase 2/3 safety population defined
above. Although the median follow-up duration for participants included in the first
interim efficacy analysis was slightly less than 2 months as of November 4, 2020, these
participants were also included in the final efficacy analyses with data cut-off of
November 14, 2020, which extended the median follow-up for these participants to
greater than 2 months. The results of the final efficacy analysis on data to November 14,
2020, indicate that the conclusions from the first interim efficacy analysis would not
change when including additional follow-up to November 14, 2020.

The date for data cut-off for the final efficacy analysis was November 14, 2020, when a total of
170 confirmed COVID-19 cases were accrued. As noted above, the median follow-up duration
after completion of the full vaccination regimen for all participants enrolled at that time was less
than 2 months for both safety and efficacy populations, due to a gap in enrollment. Because the
data for the final efficacy analysis could be submitted in support of the EUA request and could
provide data from a greater number of participants than from the interim analysis, FDA has
focused its review on the efficacy data from the final efficacy analyses. Additional safety
analyses from this larger database of all enrolled participants were also reviewed to evaluate for
differences compared with the smaller phase 2/3 safety population.

5.2.3. Subject Disposition and Inclusion in Analysis Populations
Disposition tables are presented below in Table 2 (efficacy analysis populations) and Table 3
(phase 2/3 safety population). Overall, few participants were discontinued or lost to follow-up,
and these and other analysis population exclusions were generally balanced between treatment
groups. Of 43,448 participants in the phase 2/3 all-enrolled population, 94.2% of vaccine
recipients and 94.1% of placebo recipients completed 2 doses (data not shown).

17

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 2. Efficacy Populations, Treatment Groups as Randomized
BNT162b2
(30 μg)
Placebo
Total
na (%)
na (%)
na (%)
Randomizedb
21823 (100.0) 21828 (100.0) 43651 (100.0)
Dose 1 all-available efficacy population
21768 (99.7) 21783 (99.8) 43551 (99.8)
Participants without evidence of infection before Dose
20314 (93.1) 20296 (93.0) 40610 (93.0)
1
Participants excluded from Dose 1 all-available efficacy
55 (0.3)
45 (0.2)
100 (0.2)
population
Reason for exclusionc
Did not receive at least 1 vaccination
54 (0.2)
45 (0.2)
99 (0.2)
Did not provide informed consent
1 (0.0)
0
1 (0.0)
Dose 2 all-available efficacy population
20566 (94.2) 20536 (94.1) 41102 (94.2)
Participants without evidence of infection prior to 7
18701 (85.7) 18627 (85.3) 37328 (85.5)
days after Dose 2
Participants without evidence of infection prior to 14
18678 (85.6) 18563 (85.0) 37241 (85.3)
days after Dose 2
Participants excluded from Dose 2 all-available efficacy
1257 (5.8)
1292 (5.9)
2549 (5.8)
population
Reason for exclusionc
Did not receive 2 vaccinations
1256 (5.8)
1292 (5.9)
2548 (5.8)
Did not provide informed consent
1 (0.0)
0
1 (0.0)
Evaluable efficacy (7 days) population
20033 (91.8) 20244 (92.7) 40277 (92.3)
Evaluable efficacy (14 days) population
20033 (91.8) 20243 (92.7) 40276 (92.3)
Participants excluded from evaluable efficacy (7 days)
1790 (8.2)
1584 (7.3)
3374 (7.7)
population
Participants excluded from evaluable efficacy (14 days)
1790 (8.2)
1585 (7.3)
3375 (7.7)
population
Reason for exclusionc
Randomized but did not meet all eligibility criteria
36 (0.2)
26 (0.1)
62 (0.1)
Did not provide informed consent
1 (0.0)
0
1 (0.0)
Did not receive all vaccinations as randomized or did
1550 (7.1)
1561 (7.2)
3111 (7.1)
not receive Dose 2 within the predefined window (1942 days after Dose 1)
Had other important protocol deviations on or prior to
311 (1.4)
60 (0.3)
371 (0.8)
7 days after Dose 2
Had other important protocol deviations on or prior to
311 (1.4)
61 (0.3)
372 (0.9)
14 days after Dose 2
a

n = Number of participants with the specified characteristic.
These values are the denominators for the percentage calculations.
c
Participants may have been excluded for more than 1 reason.
Note: 100 participants 12 through 15 years of age with limited follow-up are included in the randomized population (49 in the vaccine
group and 51 in the placebo group). Some of these subjects were included in the denominators of efficacy analyses, depending on
the population analyzed, but did not contribute primary endpoint cases and do not affect efficacy conclusions for ages 16 years and
above.
b

18

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 3. Disposition of All Randomized Participants, Phase 2/3 Safety Population
BNT162b2
Placebo
N=18904
N=18892)
Treatment Group
n (%)
n (%)
Randomized
18904 (100.0)
18892 (100.0)
Vaccinated
Completed 1 dose
18858 (99.8)
18849 (99.8)
Completed 2 doses
18555 (98.2)
18533 (98.1)
Withdrawn from Study
180 (1.0)
259 (1.4)
Reason for Withdrawal
Adverse Event
8 (0.0)
5 (0.0)
Death
2 (0.0)
4 (0.0)
Withdrawal by Subject
84 (0.4)
157 (0.8)
Lost to Follow-up
80 (0.4)
86 (0.5)
No longer meets eligibility criteria
1 (0.0)
2 (0.0)
Refused further study procedures
0
1 (0.0)

Total
N=37796
n (%)
37796 (100.0)
37707 (99.8)
37088 (98.1)
439 (1.2)
13 (0.0)
6 (0.0)
241 (0.6)
166 (0.4)
3 (0.0)
1 (0.0)

Source: EUA 27036, amendment 3, Table 2; c4591001-safety-tables-cos-reacto.pdf, page 43.
Note: One participant was randomized but did not sign informed consent and therefore not included in any analysis population.
Note: 120 HIV-positive participants included in this table. HIV population analyses were summarized separately from analyses
based on the phase 2/3 safety population, but included in the all-enrolled poplation analyses presented in this briefing document.
%:n/N. n = number of subjects with the specified characteristic. N = number of participants >16 years of age enrolled by October 9,
2020, including 120 HIV-positive participants, and received at least 1 dose of study vaccine or placebo. N is the denominator used
for the percentage calculations.
Data analysis cutoff date: November 14, 2020

The numbers of randomized participants contributing to efficacy analyses presented in this
document include 100 participants 12 through 15 years of age (49 in the vaccine group and 51
in the placebo group) who had limited follow-up at the time of the November 14, 2020 data cutoff. However, the sponsor did not include this age group in the EUA request. The numbers of
participants presented and used as denominators for efficacy calculations were not adjusted to
remove participants 12 through 15 years of age. Because the number of participants 12 through
15 years of age is very small relative to the overall efficacy analysis populations, and no primary
endpoint COVID-19 cases occurred in this age group, the vaccine efficacy conclusions are not
impacted. No participants 12 through 15 years of age are included in the safety analyses.
However, the safety disposition table includes 120 HIV-positive participants who were not
included in the phase 2/3 safety population analyses.

5.2.4. Demographics and Other Baseline Characteristics
Overall, the phase 2/3 evaluable efficacy population included 49.4% females, 81.9% White,
9.8% African American, 4.4% Asian participants, and <3% from other racial groups; 26.2% of
participants were Hispanic/Latino; 21.4% of participants were >65 years of age. The median
age was 51 years. The most frequently reported comorbidities were obesity (35.1%), diabetes
(with and without chronic complications, 8.4%) and pulmonary disease (7.8%). Geographically,
76.7% of participants were from the US, 15.3% from Argentina, 6.1% from Brazil, and 2% from
South Africa.
The demographic characteristics among vaccine and placebo participants in the all-available
efficacy population were similar to the evaluable efficacy population. Please refer to the table
below.

19

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 4. Demographic Characteristics, Participants With or Without Evidence of Infection Prior to
7 Days After Dose 2, Evaluable Efficacy (7 Days) Population
BNT162b2
Placebo
Total
(Na=20033)
(Na=20244)
(Na=40277)
Characteristic
Nb (%)
Nb (%)
Nb (%)
Sex: Female
9794 (48.9)
10107 (49.9)
19901 (49.4)
Sex: Male
10239 (51.1)
10137 (50.1)
20376 (50.6)
Age at Vaccination: Mean years (SD)
50.3 (15.73)
50.1 (15.78)
50.2 (15.76)
Age at Vaccination: Median (years)
51.0
51.0
51.0
Age at Vaccination: Min, max (years)
(12, 89)
(12, 91)
(12, 91)
Age Group: 16 to <18 years
77 (0.4)
76 (0.4)
153 (0.4)
Age Group: 16 to 55 years
11589 (57.8)
11743 (58.0)
23332 (57.9)
Age Group: >55 years
8396 (41.9)
8454 (41.8)
16850 (41.8)
Age Group: ≥65 years
4294 (21.4)
4319 (21.3)
8613 (21.38)
Age Group: ≥75 years
860 (4.3)
852 (4.2)
1712 (4.3)
Race: American Indian or Alaska Native
131 (0.7)
122 (0.6)
253 (0.6)
Race: Asian
880 (4.4)
883 (4.4)
1763 (4.4)
Race: Black or African American
1957 (9.8)
1972 (9.7)
3929 (9.8)
Race: Native Hawaiian or Other Pacific
54 (0.3)
29 (0.1)
83 (0.2)
Islander
Race: White
16387 (81.8)
16619 (82.1)
33006 (81.9)
Race: Multiracial
523 (2.6)
493 (2.4)
1016 (2.5)
Race: Not reported
101 (0.5)
126 (0.6)
227 (0.6)
Ethnicity: Hispanic or Latino
5272 (26.3)
5281 (26.1)
10553 (26.2)
Ethnicity: Not Hispanic or Latino
14652 (73.1)
14847 (73.3)
29499 (73.2)
Ethnicity: Not reported
109 (0.5)
116 (0.6)
225 (0.6)
Comorbiditiesc: Yes
9278 (46.3)
9314 (46.0)
18592 (46.2)
Comorbidities: No
10755 (53.7)
10930 (54.0)
21685 (53.8)
Comorbidity: Obesity
6934 (34.6)
7093 (35.0)
14027 (34.8)
a

.N = number of participants in the specified group, or the total sample. This value is the denominator for the percentage
calculations.
b
.n = number of participants with the specified characteristic.
c
. Number of participants who have 1 or more comorbidities that increase the risk of severe COVID-19 disease: defined as patients
who had at least one of the Charlson comorbidity index (Appendix B, page 52) category or obesity only (BMI ≥30 kg/m2).

Overall, the phase 2/3 safety population included 83.1% White, 9.1% African American, 4.3%
Asian participants, and <3% from other racial groups; 28.0% of participants were
Hispanic/Latino; 21.6% of participants were >65 years of age. The median age was 52 years,
and safety data from a total of 103 participants 16 and 17 years of age were included in this
submission. The most frequently reported comorbidities were obesity (35.1%), diabetes (without
chronic complications, 7.8%) and chronic pulmonary disease (7.8%). Geographically, 76.7% of
participants were from the US, 15.3% from Argentina, 6.1% from Brazil, and 2.0% from South
Africa.
The demographic characteristics among vaccine and placebo participants in the all-enrolled
population were similar and were also enrolled from sites in Germany (1%) and Turkey (1%).
There were no significant imbalances in demographic and other baseline characteristics
between the all-enrolled population and phase 2/3 safety population with median 2-month
follow-up.

20

Table 5. Demographics and Other Baseline Characteristics, Phase 2/3 Safety Population
BNT162b2
Placebo
BNT162b2
BNT162b2 BNT162b2
N=18801
N=18785
Characteristic
n (%)
n (%)
n (%)
n (%)
n (%)
16 to <18
18 to <65
65 to <75
>75
16 to <18
Age (years)
Age (years)
Mean
16.40
44.99
68.84
16.36
78.07
[SD]
[0.49]
[12.66]
[2.80]
[0.48]
[2.78]
Median
16
46
68
77
16
Min, max
16-17
18-64
65-74
75-89
16-17
Sex
Male
33 (0.2)
7385 (39.3)
1714 (9.1)
470 (2.5)
24 (0.1)
Female
20 (0.1)
7305 (38.9)
1513 (8.0)
361 (1.9)
26 (0.1)
Race
White
37 (0.2)
11895 (63.3)
2908 (15.5)
775 (4.1)
38 (0.2)
African
11 (0.1)
1477 (7.9)
186 (1.0)
20 (0.1)
7 (0.0)
American
Asian
0 (0.0)
693 (3.7)
81 (0.4)
26 (0.1)
0 (0.0)
Multiracial
3 (0.0)
417 (2.2)
21 (0.1)
7 (0.0)
3 (0.0)
Not reported
0 (0.0)
82 (0.4)
11 (0.1)
0 (0.0)
1 (0.0)
American
0 (0.0)
84 (0.4)
15 (0.1)
2 (0.0)
1 (0.0)
Indian or
Alaska native
Nat. HI or
2 (0.0)
42 (0.2)
5 (0.0)
1 (0.0)
0 (0.0)
other Pac. Isl.
Ethnicity
Hispanic or
6 (0.0)
4595 (24.4)
549 (2.9)
103 (0.5)
5 (0.0)
Latino
Non47 (0.2)
10009 (53.2)
2658 (14.1)
722 (3.8)
44 (0.2)
Hispanic/nonLatino
Not reported
0 (0.0)
86 (0.5)
20 (0.1)
6 (0.0)
1 (0.0)
Baseline Body
Mass Index
(BMI)
Obese
3 (0.0)
5200 (27.7)
1079 (5.7)
248 (1.3)
14 (0.1)
Overweight
14 (0.1)
4901 (26.1)
1278 (6.8)
368 (2.0)
9 (0.0)

Total
N=37586
n (%)

Placebo
n (%)
18 to <65

Placebo
n (%)
65 to <75

Placebo
n (%)
>75

44.78
[12.72]
46
18-64

68.84
[2.78]
69
65-74

78.10
[2.81]
77
75-91

50.38
[15.70]
52
16-91

7153 (38.1)
7539 (40.1)

1724 (9.2)
1511 (8.0)

498 (2.7)
310 (1.7)

19001 (50.6)
18585 (49.4)

11891 (63.3)
1505 (8.0)

2930 (15.6)
189 (1.0)

756 (4.0)
21 (0.1)

31230 (83.1)
3416 (9.1)

715 (3.8)
379 (2.0)
98 (0.5)
83 (0.4)

72 (0.4)
18 (0.1)
10 (0.1)
11 (0.1)

19 (0.1)
5 (0.0)
5 (0.0)
2 (0.0)

1606 (4.3)
853 (2.3)
207 (0.6)
198 (0.5)

21 (0.1)

5 (0.0)

0 (0.0)

76 (0.2)

4616 (24.6)

558 (3.0)

90 (0.5)

10522 (28.0)

10004 (53.3)

2652 (14.1)

707 (3.8)

26843 (71.4)

72 (0.4)

25 (0.1)

11 (0.1)

221 (0.6)

5242 (27.9)
4857 (25.9)

1147 (6.1)
1255 (6.7)

235 (1.3)
340 (1.8)

13168 (35.0)
13022 (34.6)

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
BNT162b2
N=18801
Characteristic
n (%)
16 to <18
Age (years)
Baseline
Evidence of
Prior SARSCoV-2 Infection
Negative
48 (0.3)
Positive
Missing
Comorbidities
No
Yes
Diabetes
Without
Chronic
Complication
Chronic
Pulmonary
Disease
Myocardial
Infarction
Peripheral
Vascular
Disease
Liver Disease
(mild,
moderate or
severe)
Diabetes
With Chronic
Complication
Congestive
Heart Failure
AIDS/HIV

BNT162b2
n (%)
18 to <65

BNT162b2
n (%)
65 to <75

BNT162b2
n (%)
>75

13879 (73.8%)

3109 (16.5)

805 (4.3)

3 (0.0)
2 (0.0)

473 (2.5%)
338 (1.8%)

53 (0.3)
65 (0.3)

16 (0.1)
10 (0.1)

48 (0.3)

12353 (65.7%)

2081 (11.1)

5 (0.0)
0 (0.0)

2337 (12.4%)
814 (4.3%)

5 (0.0)

Placebo
N=18785
n (%)
16 to <18

Total
N=37586
n (%)

Placebo
n (%)
18 to <65

Placebo
n (%)
65 to <75

Placebo
n (%)
>75

47 (0.3%) 13858 (73.8%)

3115 (16.6%)

788 (4.2%)

520 (2.8%)
314 (1.7%)

52 (0.3%)
68 (0.4%)

5 (0.0%)
15 (0.1%)

444 (2.4)

37 (0.2%) 12412 (66.1%)

2118 (11.3%)

470 (2.5%)

1146 (6.1)
497 (2.6)

387 (2.1)
156 (0.8)

13 (0.1%)
1 (0.0%)

2280 (12.1%)
849 (4.5%)

1117 (5.9%)
491 (2.6%)

1093 (5.8%)

286 (1.5)

89 (0.5)

12 (0.1%)

1060 (5.6%)

309 (1.6%)

66 (0.4%)

2920 (7.8%)

0 (0.0)

82 (0.4%)

71 (0.4)

41 (0.2)

0 (0.0%)

73 (0.4%)

83 (0.4%)

31 (0.2%)

381 (1.0%)

0 (0.0)

26 (0.1%)

67 (0.4)

31 (0.2)

0 (0.0%)

29 (0.2%)

52 (0.3%)

33 (0.2%)

238 (0.6%)

0 (0.0)

83 (0.4%)

34 (0.2)

7 (0.0)

0 (0.0%)

67 (0.4%)

17 (0.1%)

6 (0.0%)

214 (0.6%)

0 (0.0)

47 (0.2%)

36 (0.2)

15 (0.1)

0 (0.0%)

47 (0.3%)

47 (0.3%)

18 (0.1%)

210 (0.6%)

0 (0.0)

44 (0.2%)

26 (0.1)

17 (0.1)

0 (0.0%)

36 (0.2%)

30 (0.2%)

16 (0.1%)

169 (0.4%)

0 (0.0)

0 (0.0%)

0 (0.0)

0 (0.0)

0 (0.0%)

1 (0.0%)

0 (0.0%)

0 (0.0%)

1 (0.0%)

3 (0.0%)
0 (0.0%)

35649
(94.8%)
1125 (3.0%)
812 (2.2%)

29963
(79.7%)
338 (1.8%) 7623 (20.3%)
132 (0.7%) 2940 (7.8%)

22

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
BNT162b2
N=18801
Characteristic
n (%)
Age (years)
16 to <18
Hypertension
0 (0.0)

BNT162b2
n (%)
18 to <65
2569 (13.7%)

BNT162b2
n (%)
65 to <75
1528 (8.1)

BNT162b2
n (%)
>75
488 (2.6)

Placebo
N=18785
n (%)
16 to <18
1 (0.0%)

Placebo
n (%)
18 to <65
2621 (14.0%)

Placebo
n (%)
65 to <75
1569 (8.4%)

Total
Placebo
N=37586
n (%)
n (%)
>75
432 (2.3%) 9208 (24.5%)

only
Source: FDA-generated table.
Abbreviations: n = number of participants with the specified characteristic; N = number of participants >16 years of age enrolled by October 9, 2020 and received at least 1 dose of
vaccine or placebo, N is denominator for the percentage calculations; SD = standard deviation; min, max = minimum, maximum; Nat. HI = Native Hawaiian; Pac. Isl. = Pacific Islander
Data analysis cutoff date: November 14, 2020.

23

5.2.5. Vaccine Efficacy
Primary Efficacy Analyses
Efficacy Results – Primary Endpoint (Evaluable Efficacy Population)
For the first primary efficacy endpoint, vaccine efficacy (VE) for BNT162b2 against confirmed
COVID-19 was evaluated in participants without evidence of prior SARS-CoV-2 infection prior to
7 days after Dose 2. For the second primary efficacy endpoint, VE for BNT162b2 against
confirmed COVID-19 was evaluated in participants with and without evidence of prior SARSCoV-2 infection prior to 7 days after Dose 2. Cases were counted from 7 days after Dose 2 for
both endpoints. The criterion for success was met if the posterior probability that true vaccine
efficacy >30% conditioning on the available data was >99.5% at the final analysis.
For participants without evidence of SARS-CoV-2 infection prior to 7 days after Dose 2, VE
against confirmed COVID-19 occurring at least 7 days after Dose 2 was 95.0%. The case split
was 8 COVID-19 cases in the BNT162b2 group compared to 162 COVID-19 cases in the
placebo group (Table 6). The 95% credible interval for the vaccine efficacy was 90.3% to
97.6%, indicating that the true VE is at least 90.3% with a 97.5% probability, which met the prespecified success criterion.
Table 6. Final Analysis of Efficacy of BNT162b2 Against Confirmed COVID-19 From 7 Days After
Dose 2 in Participants Without Evidence of Prior SARS-CoV-2 Infection - Evaluable Efficacy
Population
BNT162b2
Placebo
Na = 18198
Na =18325
Cases
Cases
Met
n1b
n1b
Vaccine
Predefined
Surveillance
Surveillance
Efficacy %
Success
Pre-specified Age Group
Timec (n2d)
Timec (n2d)
(95% CI)
Criterion*
All participants
8
162
95.0
Yes
2.214 (17411)
2.222 (17511)
(90.3, 97.6)e
16 to 55 years
5
114
95.6
NA
1.234 (9897)
1.239 (9955)
(89.4, 98.6)f
> 55 years and older
3
48
93.7
NA
0.980 (7500)
0.983 (7543)
(80.6, 98.8)f
*Success criterion: the posterior probability that true vaccine efficacy > 30% conditioning on the available data is >99.5% at the final
analysis
a
N = number of participants in the specified group.
b
n1 = Number of participants meeting the endpoint definition.
c
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the
endpoint. Time period for COVID-19 case accrual is from 7 days after Dose 2 to the end of the surveillance period.
d
n2 = Number of participants at risk for the endpoint.
e
Credible interval for VE was calculated using a beta-binomial model with prior beta (0.700102, 1) adjusted for surveillance time.
f
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted to the surveillance time.

For participants with and without evidence of SARS-CoV-2 infection before and during
vaccination regimen, VE against confirmed COVID-19 occurring at least 7 days after Dose 2
was 94.6%, with 9 and 169 cases in the BNT162b2 and placebo groups respectively (Table 7).
The posterior probability was >99.99% for the true VE being greater than 30%. The 95%
credible interval for the vaccine efficacy was 89.9% to 97.3%, indicating that the true VE is at
least 89.9% with a 97.5% probability given the available data.

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 7. Efficacy of BNT162b2 Against Confirmed COVID-19 From 7 Days After Dose 2 in
Participants With And Without Evidence of Prior SARS-CoV-2 Infection, Evaluable Efficacy
Population
BNT162b2
Placebo
Na = 19965
Na =20172
Met
Cases n1b
Cases n1b
Vaccine
Predefined
Surveillance
Surveillance
Efficacy %
Success
Pre-specified Age Group
Timec (n2d)
Timec (n2d)
(95% CI)
Criterion*
All participants
9
169
94.6
Yes
2.332 (18559)
2.345 (18708)
(89.9, 97.3)e
16 to 55 years
6
120
95.0
NA
1.309 (10653)
1.317 (10738)
(88.7, 98.2)f
>55 years and older
3
49
93.8
NA
1.022 (7892)
1.028 (7956)
(80.9, 98.8)f
*Success criterion: the posterior probability that true vaccine efficacy >30% conditioning on the available data is >99.5% at the final
analysis
a
N = number of participants in the specified group.
b
n1 = Number of participants meeting the endpoint definition.
c
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the
endpoint. Time period for COVID-19 case accrual is from 7 days after Dose 2 to the end of the surveillance period.
d
n2 = Number of participants at risk for the endpoint.
e
Credible interval for VE was calculated using a beta-binomial model with prior beta (0.700102, 1) adjusted for surveillance time.
f
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted to the surveillance time.

Subgroup Analyses of Vaccine Efficacy
Subgroup analyses of the second primary efficacy endpoint provide additional information about
the VE for participants with and without evidence of infection prior to vaccination in specific
populations enrolled, which is the endpoint considered to represent the general population who
may receive the vaccine, as baseline evidence of prior infection may not be known by all people
who might receive the vaccine. The results are displayed below in Table 8. The VE point
estimates for the subgroup analyses were comparable to results for the first primary efficacy
endpoint.
VE point estimates were uniformly high across the subgroups examined with the exception of
participants identifying as multiracial and participants with evidence of prior SARS-CoV-2
infection at enrollment, for which too few COVID-19 cases occurred to interpret efficacy data for
these subgroups. Additionally, the numbers of participants and cases in some other specific
subgroups, such as the adolescent age group and racial subgroups, limits the interpretability of
the VE results because of the wide credible intervals, but are displayed for completeness.

25

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 8: Subgroup Analyses of Second Primary Endpoint: First COVID-19 Occurrence From 7
Days After Dose 2, by Subgroup, Participants With and Without Evidence of Infection Prior to 7
Days After Dose 2, Evaluable Efficacy (7 Days) Population
BNT162b2
Placebo
Na=19965
Na=20172
Cases n1b
Cases n1b
c
Efficacy Endpoint
Surveillance Time
Surveillance Timec Vaccine Efficacy %
d
Subgroup
(n2 )
(n2d)
(95% CI)e
Overall
9
169
94.6 (89.6, 97.6)
2.332 (18559)
2.345 (18708)
Age group (years)
16 to 17
0
1
100.0 (-3969.9,
0.003 (58)
0.003 (61)
100.0)
18 to 64
8
149
94.6 (89.1, 97.7)
1.799 (14443)
1.811 (14566)
65 to 74
1
14
92.9 (53.2, 99.8)
0.424 (3239)
0.423 (3255)
≥75
0
5
100.0 (-12.1, 100.0)
0.106 (805)
0.109 (812)
At riskf
Yes
4
87
95.4 (87.8, 98.8)
1.083 (8584)
1.084 (8609)
No
5
82
93.8 (85.0, 98.1)
1.250 (9975)
1.261 (10099)
Age group (years) and at risk
16-64 and not at risk
5
75
93.3 (83.6, 97.9)
1.012 (8172)
1.019 (8239)
16-64 and at risk
3
75
96.0 (87.8, 99.2)
0.790 (6329)
0.794 (6388)
≥65 and not at risk
0
7
100.0 (29.5, 100.0)
0.238 (1794)
0.241 (1849)
≥65 and at risk
1
12
91.7 (44.2, 99.8)
0.293 (2250)
0.290 (2218)
Obeseg
Yes
3
68
95.5 (86.2, 99.1)
0.810 (6445)
0.832 (6582)
No
6
101
94.1 (86.7, 97.9)
1.522 (12108)
1.513 (12120)
Age group (years) and obese
16-64 and not obese
5
89
94.4 (86.4, 98.2)
1.163 (9380)
1.162 (9422)
16-64 and obese
3
61
95.0 (84.6, 99.0)
0.637 (5116)
0.651 (5199)
≥65 and not obese
1
12
91.8 (44.7, 99.8)
0.358 (2715)
0.351 (2685)
≥65 and obese
0
7
100.0 (27.4, 100.0)
0.172 (1328)
0.180 (1382)
Sex
Female
5
84
93.9 (85.2, 98.1)
1.149 (9102)
1.176 (9366)
Male
4
85
95.3 (87.6, 98.8)
1.183 (9457)
1.170 (9342)
Ethnicity
Hispanic or Latino
3
55
94.5 (83.2, 98.9)
0.637 (5074)
0.638 (5090)

26

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Efficacy Endpoint
Subgroup
Not Hispanic or Latino
Race
American Indian or Alaska native
Asian
Black or African American
Native Hawaiian or other Pacific
Islander
White
Multiracial
Not reported
Baseline SARS-CoV-2 Status
Positiveh
Negativei
Unknown

BNT162b2
Na=19965
Cases n1b
Surveillance Timec
(n2d)
6
1.681 (13380)

Placebo
Na=20172
Cases n1b
Surveillance Timec
(n2d)
114
1.693 (13509)

0
0.011 (104)
1
0.095 (796)
0
0.187 (1758)
0
0.006 (50)
7
1.975 (15294)
1
0.047 (467)
0
0.010 (90)

1
0.010 (104)
4
0.097 (808)
7
0.188 (1758)
1
0.003 (29)
153
1.990 (15473)
1
0.042 (424)
2
0.013 (112)

1
0.056 (526)
8
2.237 (17637)
0
0.039 (396)

1
0.060 (567)
164
2.242 (17720)
4
0.043 (421)

Vaccine Efficacy %
(95% CI)e
94.7 (88.1, 98.1)

100.0 (-3511.0,
100.0)
74.4 (-158.7, 99.5)
100.0 (30.4, 100.0)
100.0 (-2112.1,
100.0)
95.4 (90.3, 98.2)
10.4 (-6934.9, 98.9)
100.0 (-581.6, 100.0)

-7.1 (-8309.9, 98.6)
95.1 (90.1, 97.9)
100.0 (-68.9, 100.0)

a.

N = number of participants in the specified group.
n1 = Number of participants meeting the endpoint definition.
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the
endpoint. Time period for COVID-19 case accrual is from 7 days after Dose 2 to the end of the surveillance period.
d.
n2 = Number of participants at risk for the endpoint.
e.
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted to the surveillance time.
f.
At risk is defined as having at least one of the Charlson comorbidity index (Appendix B, page 52) category or obesity (BMI ≥30
kg/m2).
g.
Obese is defined as BMI ≥30 kg/m2.
h.
Positive N-binding antibody result at Visit 1, positive NAAT result at Visit 1, or medical history of COVID-19.
i.
Negative N-binding antibody result at Visit 1, negative NAAT result at Visit 1, and no medical history of COVID-19.
b.
c.

The demographics of the participants with confirmed COVID-19 cases contributing to the
primary efficacy analysis are displayed below in Table 9.

27

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 9. Demographic Characteristics, Participants With Protocol Defined Case (Without Evidence
of Infection Prior to 7 Days After Dose 2)
BNT162b2
Placebo
Total
(Na=8)
(Na=162)
(Na=170)
Characteristic
Nb (%)
Nb (%)
Nb (%)
Sex: Female
5 (62.5)
81 (50.0)
86 (50.6)
Sex: Male
3 (37.5)
81 (50.0)
84 (49.4)
Age at Vaccination: Mean years (SD)
51.4 (12.47)
47.4 (15.21)
47.6 (15.09)
Age at Vaccination: Median (years)
51
48
48
Age at Vaccination: Min, max (years)
(30, 69)
(18, 79)
(18, 79)
Age Group: 16 to < 18 years
0
0
0
Age Group: 18 to < 65 years
7 (87.5)
143 (88.3)
150 (88.2)
Age Group: ≥ 65 to < 75 years
1 (12.5)
14 (8.6)
15 (8.8)
Age Group: ≥ 75 years
0
5 (3.1)
5 (2.9)
Race: American Indian or Alaska Native
0
1 (0.6)
1 (0.6)
Race: Asian
1 (12.5)
4 (2.5)
5 (2.9)
Race: Black or African American
0
7 (4.3)
7 (4.1)
Race: Native Hawaiian or Other Pacific Islander
0
1 (0.6)
1 (0.6)
Race: White
7 (87.5)
146 (90.1)
153 (90.0)
Race: Multiracial
0
1 (0.6)
1 (0.6)
Race: Not reported
0
2 (1.2)
2 (1.2)
Ethnicity: Hispanic or Latino
3 (37.5)
53 (32.7)
56 (32.9)
Ethnicity: Not Hispanic or Latino
5 (62.5)
109 (67.3)
114 (67.1)
Ethnicity: Not reported
0
0
0
Comorbiditiesc: Yes
4 (50.0)
86 (53.1)
90 (52.9)
Comorbidities: No
4 (50.0)
76 (46.9)
80 (47.1)
Comorbidity: Obesity
3 (37.5)
67 (41.4)
70 (41.2)
a

N = number of participants in the specified group, or the total sample. This value is the denominator for the percentage
calculations.
b
n = Number of participants with the specified characteristic.
c
Number of participants who have 1 or more comorbidities that increase the risk of severe COVID-19 disease: defined as patients
who had at least one of the Charlson comorbidity index (Appendix B, page 52) category or obesity only (BMI ≥30 kg/m2).

Only 3% of participants had evidence of prior infection at study enrollment, and additional
analyses showed that very few COVID-19 cases occurred in these participants over the course
of the entire study (9 in the placebo group and 10 in the BNT162b2 group, only 1 of which
occurred 7 days or more after completion of the vaccination regimen – data not shown). The
placebo group attack rate from enrollment to the November 14, 2020, data cut-off date was
1.3% both for participants without evidence of prior infection at enrollment (259 cases in 19,818
participants) and for participants with evidence of prior infection at enrollment (9 cases in 670
participants). While limited, these data do suggest that previously infected individuals can be at
risk of COVID-19 (i.e., reinfection) and could benefit from vaccination.
Additional analyses of the first primary efficacy endpoint were conducted to evaluate the vaccine
efficacy, by comorbidity status. VE point estimates were uniformly high across the comorbidities
examined, though for some interpretation of the results is limited by small numbers of
participants and/or cases.

28

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 10. Vaccine Efficacy: First COVID-19 Occurrence From 7 Days After Dose 2, by Comorbidity
Status, Among Participants Without Evidence of Infection Prior to 7 Days After Dose 2, Evaluable
Efficacy (7 Days) Population
BNT162b2 (30 μg)
Placebo
Na=18198
Na=18325
Cases n1b
Cases n1b
c
Vaccine Efficacy %
Efficacy Endpoint
Surveillance Time
Surveillance Timec
d
(95% CIe)
Subgroup
(n2 )
(n2d)
Overall
8
162
95.0
2.214 (17411)
2.222 (17511)
(90.0, 97.9)
Comorbidity
No comorbidity
4
76
94.7
1.189 (9381)
1.197 (9482)
(85.9, 98.6)
Any comorbidityf
4
86
95.3
1.025 (8030)
1.025 (8029)
(87.7, 98.8)
Any malignancy
1
4
75.7
0.092 (704)
0.090 (681)
(-145.8, 99.5)
Cardiovascular
0
5
100.0
0.067 (534)
0.062 (492)
(-0.8, 100.0)
Chronic pulmonary
1
14
93.0
disease
0.175 (1374)
0.171 (1358)
(54.1, 99.8)
Diabetes
1
19
94.7
0.176 (1372)
0.176 (1374)
(66.8, 99.9)
Obese (BMI≥30.0 kg/m2)
3
67
95.4
0.763 (6000)
0.782 (6103)
(86.0, 99.1)
Hypertension
2
44
95.4
0.567 (4413)
0.567 (4437)
(82.6, 99.5)
Diabetes (including
1
20
95.0
gestational diabetes)
0.177 (1381)
0.178 (1384)
(68.7, 99.9)
Abbreviations: N-binding = SARS-CoV-2 nucleoprotein–binding; NAAT = nucleic acid amplification test; SARS-CoV-2 = severe
acute respiratory syndrome coronavirus 2; VE = vaccine efficacy.
Note: Participants who had no serological or virological evidence (prior to 7 days after receipt of the last dose) of past SARS-CoV-2
infection (i.e., N-binding antibody [serum] negative at Visit 1 and SARS-CoV-2 not detected by NAAT [nasal swab] at Visits 1 and 2),
and had negative NAAT (nasal swab) at any unscheduled visit prior to 7 days after Dose 2 were included in the analysis.
a
N = number of participants in the specified group.
b
n1 = Number of participants meeting the endpoint definition.
c
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the endpoint.
Time period for COVID-19 case accrual is from 7 days after Dose 2 to the end of the surveillance period.
d
n2 = Number of participants at risk for the endpoint.
e
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted for surveillance time.
f
Subject who had 1 or more comorbidities that increase the risk of severe COVID-19 disease: defined as participants who had at
least one of the Charlson comorbidity index (Appendix B, page 52) category or BMI ≥30 kg/m2.

Cumulative Incidence Curves
Based on the cumulative incidence curve for the all-available efficacy population after Dose 1,
(Figure 2), COVID-19 disease onset appears to occur similarly for both BNT162b2 and placebo
groups until approximately 14 days after Dose 1, at which time point, the curves diverge, with
more cases accumulating in the placebo group than in the BNT162b2 group, and there does not
appear to be evidence of waning protection during the follow-up time of approximately 2 months
following the second dose that is being evaluated at this point in time.

29

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Figure 2. Cumulative Incidence Curves for the First COVID-19 Occurrence After Dose 1, Dose 1
All-Available Efficacy Population

Secondary Efficacy Analyses
The secondary efficacy endpoints evaluate the VE of BNT162b2 for the prevention of COVID-19
disease from 14 days after Dose 2 and based on the CDC’s definition of COVID-19 disease
from 7 and 14 days after Dose 2. The case splits and VE for each of these secondary efficacy
endpoints were each similar to the primary efficacy endpoints described above.
Severe COVID-19 Cases
In the final analysis of the evaluable efficacy population (7 days), four participants had severe
COVID-19 disease at least 7 days after Dose 2 (one subject who received BNT162b2 and three
participants who received placebo). The vaccine recipient who had severe COVID-19 disease
met the severe case definition because oxygen saturation at the COVID-19 illness visit was
93% on room air. The subject was not hospitalized, did not seek further medical care, and did
not have risk factors for severe disease. The three placebo recipients who had severe COVID19 disease met the severe case definition for the following reasons: one subject had an oxygen
saturation of 92% on room air without other severe disease criteria, one subject was

30

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

hospitalized for noninvasive positive pressure ventilation with bilateral pneumonia, and one
subject had an oxygen saturation of 92% and ICU admission for heart block. One of these
placebo recipients with severe disease also had a body mass index > 30 kg/m2 as a risk factor,
while the other two participants did not have any risk factors for severe disease. The vaccine
efficacy of this secondary efficacy endpoint is shown in Table 11.
Table 11. First Severe COVID-19 Occurrence from 7 Days after Dose 2 - Evaluable Efficacy
Population
BNT162b2
Placebo
Na=18198
Na=18325
Met
Cases n1b
Cases n1b
Vaccine
Predefined
Secondary Efficacy
Surveillance Timec
Surveillance Timec
Efficacy %
Success
d
Endpoint
(n2 )
(n2d)
(95% CI)
Criterion*
First severe COVID-19
1
3
66.4
No
occurrence from 7 days
2.215 (17411)
2.232 (17511)
(-124.8,
after Dose 2 in participants
96.3)e
without evidence of prior
SARS-CoV-2 infection
*Success criterion: the posterior probability that true vaccine efficacy > 30% conditioning on the available data is >98.6% at the final
analysis.
a.
N = number of participants in the specified group.
b.
n1 = Number of participants meeting the endpoint definition.
c.
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the endpoint.
Time period for COVID-19 case accrual is from 7 or 14 days after Dose 2 to the end of the surveillance period depending on
specified endpoint.
d
. n2 = Number of participants at risk for the endpoint.
e
Credible interval for VE was calculated using a beta-binomial model with prior beta (0.700102, 1) adjusted for surveillance time.
f
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted to the surveillance time.

In the all-available efficacy population, ten participants had severe COVID-19 disease after
Dose 1 (one subject who received BNT162b2 and nine participants who received placebo). Five
of the remaining six placebo recipients who had severe COVID-19 disease were hospitalized,
two of whom were admitted to an intensive care unit. Five of these remaining six placebo
recipients who had severe disease had at least one risk factor for severe disease. The total
number of severe cases is small, which limits the overall conclusions that can be drawn;
however, the case split does suggest protection from severe COVID-19 disease.
Table 12. First Severe COVID-19 Occurrence After Dose 1 – Dose 1 All-Available Efficacy
Population
BNT162b2
Placebo
Na=21669
Na=21686
Cases n1b
Cases n1b
Surveillance Timec Surveillance Timec
Vaccine Efficacy %
Secondary Efficacy Endpoint
(n2d)
(n2d)
(95% CI)
First severe case occurrence after
1
9
88.9
Dose 1
4.021 (21314)
4.006 (21259)
(20.1, 99.7)f
After Dose 1 to before Dose 2
0
4
100.0 (-51.5, 100.0)
Dose 2 to 7 days after Dose 2
0
1 100.0 (-3800.0, 100.0)
≥7 Days after Dose 2
1
4
75.0 (-152.6, 99.5)
a

N = number of participants in the specified group.
n1 = Number of participants meeting the endpoint definition.
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the endpoint.
Time period for COVID-19 case accrual is from 7 or 14 days after Dose 2 to the end of the surveillance period depending on
specified endpoint.
d
n2 = Number of participants at risk for the endpoint.
e
Credible interval for VE was calculated using a beta-binomial model with prior beta (0.700102, 1) adjusted for surveillance time.
f
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted to the surveillance time.
b
c

31

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Additional Efficacy Analyses
Additional analyses of the first primary efficacy endpoint were conducted to evaluate the allavailable efficacy population, for all participants regardless of evidence of prior infection through
7 days after Dose 2 (Table 13).
Table 13. Primary Efficacy Endpoint –All-Available Efficacy Population
BNT162b2
Placebo
Na=21669
Na=21686
Cases n1b
Cases n1b
c
Surveillance Time Surveillance Timec
Efficacy Endpoint
(n2d)
(n2d)
First COVID-19 occurrence after
50
275
Dose 1 – Dose 1
4.015 (21314)
3.982 (21258)
After Dose 1 to before Dose 2
39
82
Dose 2 to 7 days after Dose 2
2
21
≥7 Days after Dose 2
9
172

Vaccine Efficacy %
(95% CI)
82.0
(75.6, 86.9)f
52.4 (29.5, 68.4)
90.5 (61, 98.9)
94.8 (89.8, 97.6)

a

N = number of participants in the specified group.
n1 = Number of participants meeting the endpoint definition.
c
Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the endpoint.
Time period for COVID-19 case accrual is from 7 or 14 days after Dose 2 to the end of the surveillance period depending on
specified endpoint.
d
n2 = Number of participants at risk for the endpoint.
e
Credible interval for VE was calculated using a beta-binomial model with prior beta (0.700102, 1) adjusted for surveillance time.
f
Confidence interval (CI) for VE is derived based on the Clopper and Pearson method adjusted to the surveillance time.
b

VE in participants in the all-available efficacy population was similar to results in the evaluable
efficacy population. The VE for the prevention of COVID-19 disease after Dose 1 is 82%, in the
all-available efficacy population. Based on the number of cases accumulated after Dose 1 and
before Dose 2, there does seem to be some protection against COVID-19 disease following one
dose; however, these data do not provide information about longer term protection beyond 21
days after a single dose.
Efficacy Summary
The data submitted in this EUA request were consistent with the recommendations set forth in
the FDA Guidance on Emergency Use Authorization for Vaccines to Prevent COVID-19 and met
the prespecified success criteria established in the protocol. In the planned interim and final
analyses, vaccine efficacy after 7 days post Dose 2 was 95%, (95% CI 90.3; 97.6) in
participants without prior evidence of SARS-CoV-2 infection and >94% in the group of
participants with or without prior infection. Efficacy outcomes were consistently robust (≥93%)
across demographic subgroups.
Efficacy against severe COVID-19 occurring after the first dose was 88.9% (95% CI 20.1, 99.7),
with an estimated VE of 75.0% (95% CI -152.6, 99.5) (1 case in BNT162b2 group and 4 cases
in placebo group) against severe COVID-19 occurring at least 7 days after Dose 2.
Among all participants (regardless of evidence of infection before or during the vaccination
regimen), 50 cases of COVID-19 occurred after Dose 1 in the BNT162b2 group compared with
275 cases in the placebo group, indicating an estimated VE of 82% (95% CI: 75.6%, 86.9%)
against confirmed COVID-19 occurring after Dose 1, with VE of 52.4% (95% CI: 29.5%, 68.4%)
between Dose 1 and Dose 2. The efficacy observed after Dose 1 and before Dose 2, from a
post-hoc analysis, cannot support a conclusion on the efficacy of a single dose of the vaccine,
because the time of observation is limited by the fact that most of the participants received a
32

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

second dose after three weeks. The trial did not have a single-dose arm to make an adequate
comparison.

5.2.6. Safety
Overview of Adverse Events
Table 14 below presents an overview of all adverse events in the phase 2/3 safety population. A
higher proportion of vaccine recipients reported adverse events compared with placebo
recipients, and this imbalance was driven by reactogenicity (solicited adverse events) reported
in the 7 days following vaccination and unsolicited adverse events corresponding to
reactogenicity symptoms among participants not in the reactogenicity subset (see presentation
of unsolicited adverse events in a later section). Proportions of participants with serious adverse
events, deaths, and withdrawals due to adverse events were balanced between treatment
groups.
Table 14. Study C4591001 Safety Overview- Ages 16 years and older
BNT162b2
Participants Experiencing at Least One:
n/N (%)
Immediate unsolicited AE Within 30 minutes after
vaccinationa
Dose #1
78/18801 (0.4)
Dose #2
52/18494 (0.3)
Solicited injection site reaction within 7 daysb
Dose #1
3216/4093 (78.6)
Dose #2
2748/3758 (73.1)
Solicited systemic AE within 7 daysb
Dose #1
2421/4093 (59.1)
Dose #2
2627/3758 (69.9)
From Dose 1 through 1 month after Dose 2a
Unsolicited non-serious AE
5071/18801 (27.0)
SAE
103/18801 (0.5)
From Dose 1 through cutoff date (safety population)
SAE
124/18801 (0.7)
From Dose 1 through cutoff date (all-enrolled)c
Withdrawal due AEs
37/21621 (0.6)
SAE
126/21621 (0.6)
Deaths
2/21621 (0.0)

Placebo
n/N (%)

66/18785 (0.4)
39/18470 (0.2)
525/4090 (12.8)
396/3749 (10.6)
1922/4090 (47.0)
1267/3749 (33.8)
2356/18785 (12.5)
81/18785 (0.4)
101/18785 (0.5)
30/21631 (0.5)
111/21631 (0.5)
4/21631 (0.0)

Source: c4591001-safety-tables-ae3.pdf pages 216,446,459,463; c4591001-safety-tables-cos-reacto.pdf, pages 113-114.
n= number of participants with the specified reaction or AE.
a
N: number of participants in the phase 2/3 safety population.
b
N: number of participants in the reactogenicity subset of the phase 2/3 safety population.
b
N: number of participants in the all-enrolled population.
Data analysis cutoff date: November 14, 2020.

Solicited Local Reactions and Systemic Adverse Events
As of the cutoff date, solicited reactogenicity data in participants 16 and 17 years of age were
not collected by e-diary and are not available. Symptoms consistent with solicited reactogenicity
that were reported by these participants were collected and analyzed as unsolicited adverse
events and are discussed with review of those data.

33

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Solicited Local Reactions
For each age group in the reactogenicity subset (younger: 18 to 55 years, older: >55 years) and
overall (18 years and older), the median onset of local reactions in the vaccine group was 0 (day
of vaccination) to 2 days after either dose and lasted a median duration between 1 and 2 days.
For both age groups, injection site pain was the most frequent solicited local adverse reaction.
After dose 2, the younger age group reported any pain more frequently than the older age group
(77.8% vs 66.1%) and pain characterized as moderate (27.1% vs. 18.0%); a similar pattern was
observed after Dose 1. Injection site redness and swelling after each dose were generally
similar for both age groups.
Subgroup analyses by age
Table 15. Frequency of Solicited Local Reactions Within 7 Days After Each Vaccination,
Reactogenicity Subset of the Phase 2/3 Safety Population*, 18 to 55 Years of Age
BNT162b2
Placebo
BNT162b2
Placebo
Dose 1
Dose 1
Dose 2
Dose 2
N=2238
N=2248
N=2045
N=2053
Local Reaction
n (%)
n (%)
n (%)
n (%)
Paina
Any
1904 (83.1)
322 (14.0)
1632 (77.8)
245 (11.7)
Mild
1170 (51.1)
308 (13.4)
1039 (49.5)
225 (10.7)
Moderate
710 (31.0)
12 (0.5)
568 (27.1)
20 (1.0)
Severe
24 (1.0)
2 (0.1)
25 (1.2)
0 (0.0)
Rednessb
Any
104 (4.5)
26 (1.1)
123 (5.9)
14 (0.7)
Mild
70 (3.1)
16 (0.7)
73 (3.5)
8 (0.4)
Moderate
28 (1.2)
6 (0.3)
40 (1.9)
6 (0.3)
Severe
6 (0.3)
4 (0.2)
10 (0.5)
0 (0.0)
Swellingb
Any
132 (5.8)
11 (0.5)
132 (6.3)
5 (0.2)
Mild
88 (3.8)
3 (0.1)
80 (3.8)
3 (0.1)
Moderate
39 (1.7)
5 (0.2)
45 (2.1)
2 (0.1)
Severe
5 (0.2)
3 (0.1)
7 (0.3)
0 (0.0)
Source: adapted from EUA 27034, amendment 3, Table 17.
n = number of participants with the specified reaction.
N = number of participants reporting at least 1 yes or no response for the specified reaction after the specified dose.
a
Mild: does not interfere with activity; moderate: interferes with activity; severe: prevents daily activity.
b
Mild: 2.0 to <5.0 cm; moderate: 5.0 to <10.0 cm; severe: >10.0 cm.
* Participants in the reactogenicity subset of the safety population >16 years of age enrolled by October 9, 2020 and received at
least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

34

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 16. Frequency of Solicited Local Reactions Within 7 Days After Each Vaccination,
Reactogenicity Subset of the Phase 2/3 Safety Population*, >55 Years of Age and Older
BNT162b2
Placebo
BNT162b2
Placebo
Dose 1
Dose 1
Dose 2
Dose 2
N=1802
N=1792
N=1660
N=1646
Local Reaction
n (%)
n (%)
n (%)
n (%)
Paina
Any
1282 (71.1)
166 (9.3)
1098 (66.1)
127 (7.7)
Mild
1008 (55.9)
160 (8.9)
792 (47.7)
125 (7.6)
Moderate
270 (15.0)
6 (0.3)
298 (18.0)
2 (0.1)
Severe
4 (0.2)
0 (0.0)
8 (0.5)
0 (0.0)
Rednessb
Any
85 (4.7)
19 (1.1)
120 (7.2)
12 (0.7)
Mild
55 (3.1)
12 (0.7)
59 (3.6)
8 (0.5)
Moderate
27 (1.5)
5 (0.3)
53 (3.2)
3 (0.2)
Severe
3 (0.2)
2 (0.1)
8 (0.5)
1 (0.1)
Swellingb
Any
118 (6.5)
21 (1.2)
124 (7.5)
11 (0.7)
Mild
71 (3.9)
10 (0.6)
68 (4.1)
5 (0.3)
Moderate
45 (2.5)
11 (0.6)
53 (3.2)
5 (0.3)
Severe
2 (0.1)
0 (0.0)
3 (0.2)
1 (0.1)
Source: EUA 27036, amendment 3, Table 21.
n = number of participants with the specified reaction.
N = number of participants reporting at least 1 yes or no response for the specified reaction after the specified dose.
a
Mild: does not interfere with activity; moderate: interferes with activity; severe: prevents daily activity.
b
Mild: 2.0 to <5.0 cm; moderate: 5.0 to <10.0 cm; severe: >10.0 cm.
* Participants in the reactogenicity subset of the safety population >16 years of age enrolled by October 9, 2020 and received at
least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

Solicited Systemic AEs
For each age group in the reactogenicity subset (younger: 18 to 55 years, older: >55 years) and
overall (18 years and older), the median onset of systemic AEs in the vaccine group in general
was 1 to 2 days after either dose and lasted a median duration of 1 day.
The frequency and severity of systemic AEs were higher in the younger than the older age
groups. Within each age group, the frequency and severity of systemic AEs was higher after
Dose 2 than Dose 1, except for vomiting and diarrhea, which was generally similar regardless of
dose. For both age groups, fatigue, headache and new/worsened muscle pain were most
common.
Subgroup analyses by age
Table 17. Frequency of Solicited Systemic Adverse Events Within 7 Days After Each VaccinationReactogenicity Subset of the Phase 2/3 Safety Population*, 18 to 55 Years of Age
BNT162b2
Placebo
BNT162b2
Placebo
Dose 1
Dose 1
Dose 2
Dose 2
N=2238
N=2248
N=2045
N=2053
Adverse Event
n (%)
n (%)
n (%)
n (%)
Fever
85 (3.7)
20 (0.9)
331 (15.8)
10 (0.5)
≥38.0℃
64 (2.8)
10 (0.4)
194 (9.2)
5 (0.2)
>38.0℃ to 38.4℃
15 (0.7)
5 (0.2)
110 (5.2)
3 (0.1)
>38.4℃ to 38.9℃
6 (0.3)
3 (0.1)
26 (1.2)
2 (0.1)
>38.9℃ to 40.0℃
0 (0.0)
2 (0.1)
1 (0.0)
0 (0.0)
>40.0℃

35

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Adverse Event
Fatiguea
Any
Mild
Moderate
Severe
Headachea
Any
Mild
Moderate
Severe
Chillsa
Any
Mild
Moderate
Severe
Vomitingb
Any
Mild
Moderate
Severe
Diarrheac
Any
Mild
Moderate
Severe
New or worsened
muscle paina
Any
Mild
Moderate
Severe
New or worsened joint
paina
Any
Mild
Moderate
Severe
Use of antipyretic or
pain medication

BNT162b2
Dose 1
N=2238
n (%)

Placebo
Dose 1
N=2248
n (%)

BNT162b2
Dose 2
N=2045
n (%)

Placebo
Dose 2
N=2053
n (%)

1085 (47.4)
597 (26.1)
455 (19.9)
33 (1.4)

767 (33.4)
46 (20.3)
289 (12.6)
11 (0.5)

1247 (59.4)
442 (21.1)
708 (33.7)
97 (4.6)

479 (22.8)
248 (11.8)
217 (10.3)
14 (0.7)

959 (41.9)
628 (27.4)
308 (13.4)
23 (1.0)

775 (33.7)
505 (22.0)
251 (10.9)
19 (0.8)

1085 (51.7)
538 (25.6)
480 (22.9)
67 (3.2)

506 (24.1)
321 (15.3)
170 (8.1)
15 (0.7)

321 (14.0)
230 (10.0)
82 (3.6)
9 (0.4)

146 (6.4)
111 (4.8)
33 (1.4)
2 (0.1)

737 (35.1)
359 (17.1)
333 (15.9)
45 (2.1)

79 (3.8)
65 (3.1)
14 (0.7)
0 (0.0)

28 (1.2)
24 (1.0)
4 (0.2)
0 (0.0)

28 (1.2)
22 (1.0)
5 (0.2)
1 (0.0)

40 (1.9)
28 (1.3)
8 (0.4)
4 (0.2)

25 (1.2)
16 (0.8)
9 (0.4)
0 (0.0)

255 (11.1)
206 (9.0)
46 (2.0)
3 (0.1)

270 (11.7)
217 (9.4)
52 (2.3)
1 (0.0)

219 (10.4)
179 (8.5)
36 (1.7)
4 (0.2)

177 (8.4)
144 (6.8)
32 (1.5)
1 (0.0)

487 (21.3)
256 (11.2)
218 (9.5)
13 (0.6)

249 (10.8)
175 (7.6)
72 (3.1)
2 (0.1)

783 (37.3)
326 (15.5)
410 (19.5)
47 (2.2)

173 (8.2)
111 (5.3)
59 (2.8)
3 (0.1)

251 (11.0)
147 (6.4)
99 (4.3)
5 (0.2)
638 (27.8)

138 (6.0)
95 (4.1)
43 (1.9)
0 (0.0)
332 (14.4)

459 (21.9)
205 (9.8)
234 (11.2)
20 (1.0)
945 (45.0)

109 (5.2)
54 (2.6)
51 (2.4)
4 (0.2)
266 (12.6)

Source: adapted from EUA 27036, amendment 3, Table 19.
n = number of participants with the specified reaction.
N = number of participants in the reactogenicity subset reporting at least 1 yes or no response for the specified reaction after the
specified dose.
a
Mild: does not interfere with activity; moderate: some interference with activity; severe: prevents daily activity.
b
Mild: 1 to 2 times in 24 hours; moderate: >2 times in 24 hours; severe: requires intravenous hydration.
c
Mild: 2 to 3 loose stools in 24 hours; moderate: 4 to 5 loose stools in 24 hours; severe: 6 or more loose stools in 24 hours.
* Participants in the reactogenicity subset of the safety population >16 years of age enrolled by October 9, 2020 and received at
least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

36

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 18. Frequency of Solicited Systemic Adverse Events Within 7 Days After Each VaccinationReactogenicity Subset of the Phase 2/3 Safety Population*, >55 Years of Age and Older
BNT162b2
Placebo
BNT162b2
Placebo
Dose 1
Dose 1
Dose 2
Dose 2
N=1802
N=1792
N=1660
N=1646
Adverse Event
n (%)
n (%)
n (%)
n (%)
Fever
26 (1.4)
7 (0.4)
181 (10.9)
4 (0.2)
≥38.0℃
23 (1.3)
2 (0.1)
131 (7.9)
2 (0.1)
>38.0℃ to 38.4℃
1 (0.1)
3 (0.2)
45 (2.7)
1 (0.1)
>38.4℃ to 38.9℃
1 (0.1)
2 (0.1)
5 (0.3)
1 (0.1)
>38.9℃ to 40.0℃
1 (0.1)
0 (0.0)
0 (0.0)
0 (0.0)
>40.0℃
Fatiguea
Any
615 (34.1)
405 (22.6)
839 (50.5)
277 (16.8)
Mild
373 (20.7)
252 (14.1)
351 (21.1)
161 (9.8)
Moderate
240 (13.3)
150 (8.4)
442 (26.6)
114 (6.9)
Severe
2 (0.1)
3 (0.2)
46 (2.8)
2 (0.1)
Headachea
Any
454 (25.2)
325 (18.1)
647 (39.0)
229 (13.9)
Mild
348 (19.3)
242 (13.5)
422 (25.4)
165 (10.0)
Moderate
104 (5.8)
80 (4.5)
216 (13.0)
60 (3.6)
Severe
2 (0.1)
3 (0.2)
9 (0.5)
4 (0.2)
Chillsa
Any
113 (6.3)
57 (3.2)
377 (22.7)
46 (2.8)
Mild
87 (4.8)
40 (2.2)
199 (12.0)
35 (2.1)
Moderate
26 (1.4)
16 (0.9)
161 (9.7)
11 (0.7)
Severe
0 (0.0)
1 (0.1)
17 (1.0)
0 (0.0)
Vomitingb
Any
9 (0.5)
9 (0.5)
11 (0.7)
5 (0.3)
Mild
8 (0.4)
9 (0.5)
9 (0.5)
5 (0.3)
Moderate
1 (0.1)
0 (0.0)
1 (0.1)
0 (0.0)
Severe
0 (0.0)
0 (0.0)
1 (0.1)
0 (0.0)
Diarrheac
Any
147 (8.2)
118 (6.6)
137 (8.3)
99 (6.0)
Mild
118 (6.5)
100 (5.6)
114 (6.9)
73 (4.4)
Moderate
26 (1.4)
17 (0.9)
21 (1.3)
22 (1.3)
Severe
3 (0.2)
1 (0.1)
2 (0.1)
4 (0.2)
New or worsened
muscle paina
Any
251 (13.9)
149 (8.3)
477 (28.7)
87 (5.3)
Mild
168 (9.3)
100 (5.6)
202 (12.2)
57 (3.5)
Moderate
82 (4.6)
46 (2.6)
259 (15.6)
29 (1.8)
Severe
1 (0.1)
3 (0.2)
16 (1.0)
1 (0.1)
New or worsened joint
paina
Any
155 (8.6)
109 (6.1)
313 (18.9)
61 (3.7)
Mild
101 (5.6)
68 (3.8)
161 (9.7)
35 (2.1)
Moderate
52 (2.9)
40 (2.2)
145 (8.7)
25 (1.5)
Severe
2 (0.1)
1 (0.1)
7 (0.4)
1 (0.1)

37

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Adverse Event
Use of antipyretic or
pain medication

BNT162b2
Dose 1
N=1802
n (%)
358 (19.9)

Placebo
Dose 1
N=1792
n (%)
213 (11.9)

BNT162b2
Dose 2
N=1660
n (%)
625 (37.7)

Placebo
Dose 2
N=1646
n (%)
161 (9.8)

Source: EUA 27036, amendment 3, Table 23.
n = number of participants with the specified reaction.
N = number of participants in the reactogenicity subset reporting at least 1 yes or no response for the specified reaction after the
specified dose.
a
Mild: does not interfere with activity; moderate: some interference with activity; severe: prevents daily activity.
b
Mild: 1 to 2 times in 24 hours; moderate: >2 times in 24 hours; severe: requires intravenous hydration.
c
Mild: 2 to 3 loose stools in 24 hours; moderate: 4 to 5 loose stools in 24 hours; severe: 6 or more loose stools in 24 hours.
* Participants in the reactogenicity subset of the safety population >16 years of age enrolled by October 9, 2020 and received at
least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

Unsolicited (non-serious) AEs
A higher frequency of unsolicited, non-serious adverse events was reported in the vaccine
group compared to placebo group and was primarily attributed to local reactions and systemic
adverse events in subjects not in the reactogenicity subset and are consistent with solicited
reactions/events reported by reactogenicity subset participants during the first 7 days following
vaccination. Table 19 below presents unsolicited adverse events reported by at least 1% of
participants in any treatment group for the phase 2/3 safety population.
Reports of lymphadenopathy were imbalanced with notably more cases in the vaccine group
(64) vs. the placebo group (6), which is plausibly related to vaccination. Bell’s palsy was
reported by four vaccine participants and none in the placebo group. These cases occurred at 3,
9, 37, and 48 days after vaccination. One case (onset at 3 days postvaccination) was reported
as resolved with sequelae within three days after onset, and the other three were reported as
continuing or resolving as of the November 14, 2020 data cut-off with ongoing durations of 10,
15, and 21 days, respectively. The observed frequency of reported Bell’s palsy in the vaccine
group is consistent with the expected background rate in the general population, and there is no
clear basis upon which to conclude a causal relationship at this time, but FDA will recommend
surveillance for cases of Bell’s palsy with deployment of the vaccine into larger populations.
There were no other notable patterns or numerical imbalances between treatment groups for
specific categories (system organ class or preferred term) of non-serious adverse events,
including other neurologic, neuro-inflammatory, and thrombotic events, that would suggest a
causal relationship to BNT162b2 vaccine.

38

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 19. Frequency of Unsolicited AEs with Occurrence in ≥1% of Participants in any Treatment
Group from Dose 1 to 1-month After Dose 2, Phase 2/3 Safety Population*, 16 Years of Age and
Older
BNT162b2
Placebo
Total
N=18801
N=18785
N=37586
System Organ Class
Preferred Term
n (%)
n (%)
n (%)
General disorders and administration
3521 (18.7)
737 (3.9)
4258 (11.3)
site conditions
Injection site pain
2125 (11.3)
286 (1.5)
2411 (6.4)
Fatigue
1029 (5.5)
260 (1.4)
1289 (3.4)
Pyrexia
1146 (6.1)
61 (0.3)
1207 (3.2)
Chills
999 (5.3)
87 (0.5)
1086 (2.9)
Pain
455 (2.4)
36 (0.2)
491 (1.3)
Musculoskeletal and connective tissue
1387 (7.4)
401 (2.1)
1788 (4.8)
disorders
Myalgia
909 (4.8)
126 (0.7)
1035 (2.8)
Arthralgia
212 (1.1)
82 (0.4)
294 (0.8)
Nervous system disorders
1158 (6.2)
460 (2.4)
1618 (4.3)
Headache
973 (5.2)
304 (1.6)
1277 (3.4)
Gastrointestinal disorders
565 (3.0)
368 (2.0)
933 (2.5)
Diarrhoea
194 (1.0)
149 (0.8)
343 (0.9)
Nausea
216 (1.1)
63 (0.3)
279 (0.7)
Source: FDA analysis.
Adverse events in any PT = at least one adverse event experienced (regardless of the MedDRA Preferred Term)
%: n/N. n = number of participants reporting at least 1 occurrence of the specified event.
of any event. N = number of participants in the specified group. This value is the denominator for the percentage calculations.
* Participants >16 years of age enrolled by October 9, 2020 and received at least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

Subgroup analyses by age
16 and 17 years of age: the table below represents an FDA-generated summary of unsolicited
AEs consistent with reactogenicity and AEs that occurred at ≥1% and higher in the BNT162b2
Vaccine Group, classified by MedDRA System Organ Class and Preferred Term.
Table 20. Frequency of Unsolicited AEs with Occurrence in ≥1% of Participants in any Treatment
Group from Dose 1 to 1 Month After Dose 2, Phase 2/3 Safety Population*, 16 and 17 Years of Age
BNT162b2
Placebo
Total
System Organ Class
N=53
N=50
N=103
Preferred Term
n (%)
n (%)
n (%)
General disorders and administration site
7 (13.2)
3 (6.0)
10 (9.7)
conditions
Injection site pain
5 (9.4)
2 (4.0)
7 (6.8)
Pyrexia
5 (9.4)
0
5 (4.9)
Pain
2 (3.8)
0
2 (1.9)
Chills
1 (1.9)
0
1 (1.0)
Injury, poisoning and procedural complications
1 (1.9)
0
1 (1.0)
Concussion
1 (1.9)
0
1 (1.0)
Facial bones fracture
1 (1.9)
0
1 (1.0)
Road traffic accident
1 (1.9)
0
1 (1.0)
Investigations
1 (1.9)
0
1 (1.0)
Body temperature increased
1 (1.9)
0
1 (1.0)
Source: FDA analysis.
Adverse events in any PT = at least one adverse event experienced (regardless of the MedDRA Preferred Term)
%: n/N. n = number of participants reporting at least 1 occurrence of the specified event.
of any event. N = number of participants in the specified group. This value is the denominator for the percentage calculations.
* Participants >16 years of age enrolled by October 9, 2020 and received at least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

39

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document
Table 21. Frequency of Unsolicited AEs with Occurrence in ≥1% of Participants in any Treatment
Group from Dose 1 to 1 Month After Dose 2, Phase 2/3 Safety Population*, 65 Years and Older
BNT162b2
Placebo
Total
System Organ Class
(N=4058)
(N=4043)
(N=8101)
Preferred Term
n (%)
n (%)
n (%)
General disorders and
577 (14.2)
118 (2.9)
695 (8.6)
administration site
conditions
Injection site pain
361 (8.9)
39 (1.0)
400 (4.9)
Fatigue
175 (4.3)
44 (1.1)
219 (2.7)
Chills
143 (3.5)
19 (0.5)
162 (2.0)
Pyrexia
148 (3.6)
10 (0.2)
158 (2.0)
Pain
60 (1.5)
7 (0.2)
67 (0.8)
Musculoskeletal and
231 (5.7)
83 (2.1)
314 (3.9)
connective tissue
disorders
Myalgia
125 (3.1)
23 (0.6)
148 (1.8)
Arthralgia
42 (1.0)
21 (0.5)
63 (0.8)
Pain in extremity
33 (0.8)
10 (0.2)
43 (0.5)
Nervous system disorders
179 (4.4)
87 (2.2)
266 (3.3)
Headache
127 (3.1)
45 (1.1)
172 (2.1)
Gastrointestinal disorders
127 (3.1)
72 (1.8)
199 (2.5)
Diarrhea
49 (1.2)
26 (0.6)
75 (0.9)
Nausea
40 (1.0)
13 (0.3)
53 (0.7)
Source: FDA analysis.
Adverse events in any PT = at least one adverse event experienced (regardless of the MedDRA Preferred Term)
%: n/N. n = number of participants reporting at least 1 occurrence of the specified event.
of any event. N = number of participants in the specified group. This value is the denominator for the percentage calculations.
* Participants >16 years of age enrolled by October 9, 2020 and received at least 1 dose of vaccine or placebo.
Data analysis cutoff date: November 14, 2020.

FDA independently conducted standard MedDRA queries (SMQs) using FDA-developed
software (MAED) to evaluate for constellations of unsolicited adverse event preferred terms that
could represent various diseases and conditions, including but not limited to allergic, neurologic,
inflammatory, and autoimmune conditions. The SMQs, conducted on the phase 2/3 all-enrolled
safety population, revealed a slight numerical imbalance of adverse events potentially
representing allergic reactions, with more participants reporting hypersensitivity-related adverse
events in the vaccine group (137 [0.63%]) compared with the placebo group (111 [0.51%]). No
imbalances between treatment groups were evident for any of the other SMQs evaluated.
Immediate AEs (phase 2/3 safety population)
The frequency of immediate AEs reported in the vaccine group was 0.4% after Dose 1 and
<0.3% after Dose 2 and were mainly consistent with solicited reactogenicity events. In both
study groups, the most frequently reported immediate AE was injection site pain (BNT162b2
vaccine 0.3%, placebo 0.2%).
Study Withdrawals due to an AE (all-enrolled population)
Of 43,448 enrolled participants, 37 (0.2%) vaccine recipients and 30 (0.1%) placebo recipients
(0.1%), and no adolescents 16 to <18 years of age, withdrew from the study due to an AE. AEs
in the SOC of General Disorders and Administration Site Conditions (7 vaccine, 3 placebo) was
common, with injection site pain the most frequent (2 vaccine, 0 placebo).

40

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Serious Adverse Events
Deaths
A total of six (2 vaccine, 4 placebo) of 43,448 enrolled participants (0.01%) died during the
reporting period from April 29, 2020 (first participant, first visit) to November 14, 2020 (cutoff
date). Both vaccine recipients were >55 years of age; one experienced a cardiac arrest 62 days
after vaccination #2 and died 3 days later, and the other died from arteriosclerosis 3 days after
vaccination #1. The placebo recipients died from myocardial infarction (n=1), hemorrhagic
stroke (n=1) or unknown causes (n=2); three of the four deaths occurred in the older group (>55
years of age). All deaths represent events that occur in the general population of the age groups
where they occurred, at a similar rate.
Non-fatal SAEs
In the all-enrolled population of (total N=43,448), the proportions of participants who reported at
least 1 SAE during the time period from Dose 1 to the data cutoff date (November 14, 2020)
were 0.6% in the BNT162b2 vaccine group and 0.5% in the placebo group. The most common
SAEs in the vaccine group which were numerically higher than in the placebo group were
appendicitis (0.04%), acute myocardial infarction (0.02%), and cerebrovascular accident
(0.02%), and in the placebo arm numerically higher than in the vaccine arm were pneumonia
(0.03%), atrial fibrillation (0.02%), and syncope (0.02%). Occurrence of SAEs involving system
organ classes and specific preferred terms were otherwise balanced between treatment groups,
including no imbalance overall in cardiovascular serious adverse events.
Appendicitis was reported as a SAE for 12 participants, and numerically higher in the vaccine
group: 8 vaccine participants ([appendicitis [n=7], appendicitis perforated [n=1]) and 4 placebo
participants (appendicitis [n=2], appendicitis perforated [n=1], complicated appendicitis [n=1]).
All of the vaccine participants (n=8) and 2 placebo participants were younger than 65 years of
age. The cases were considered unrelated to vaccination by the study investigators and
occurred no more frequently than expected in the given age groups. FDA agrees that there is no
clear basis upon which to suspect that this imbalance represents a vaccine-related risk.
Three SAEs reported in the BNT162 group were considered by the investigator as related to
vaccine or vaccine administration: shoulder injury, ventricular arrhythmia, and
lymphadenopathy. The investigator and the sponsor thought that the shoulder injury was related
to vaccine administration. Two SAEs in the BNT162b2 group and none in the placebo group
were considered by the investigator, but not the Sponsor, as related to study vaccination:
shoulder injury (n=1), ventricular arrhythmia in a participant with known cardiac conditions (n=1),
and lymphadenopathy temporally following vaccination (n=1). In FDA’s opinion following review
of the adverse event narratives, two of these events were considered as possibly related to
vaccine: shoulder injury possibly related to vaccine administration or to the vaccine itself, and
lymphadenopathy involving the axilla contralateral to the vaccine injection site. For
lymphadenopathy, the event was temporally associated and biologically plausible.
Among participants 16 to 17 years of age, there was 1 participant in the vaccine group who
experienced an SAE of facial bones fracture, which was not considered related to study
intervention by the investigator.

41

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Suspected COVID-19 Cases
As specified in the protocol, suspected cases of symptomatic COVID-19 that were not PCRconfirmed were not recorded as adverse events unless they met regulatory criteria for
seriousness. Two serious cases of suspected but unconfirmed COVID-19 were reported, both in
the vaccine group, and narratives were reviewed. In one case, a 36-year-old male with no
medical comorbidities experienced fever, malaise, nausea, headache and myalgias beginning
on the day of Dose 2 and was hospitalized 3 days later for further evaluation of apparent
infiltrates on chest radiograph and treatment of dehydration. A nasopharyngeal PCR test for
SARS-CoV-2 was negative on the day of admission, and a chest CT was reported as normal.
The participant was discharged from the hospital 2 days after admission. With chest imaging
findings that are difficult to reconcile, it is possible that this event represented reactogenicity
following the second vaccination, a COVID-19 case with false negative test that occurred less
than 7 days after completion of the vaccination series, or an unrelated infectious process. In the
other case, a 66-year-old male with no medical comorbidities experienced fever, myalgias, and
shortness of breath beginning 28 days post-Dose 2 and was hospitalized one day later with
abnormal chest CT showing a small left-sided consolidation. He was discharged from the
hospital 2 days later, and multiple nasopharyngeal PCR tests collected over a 10-day period
beginning 2 days after symptom onset were negative. It is possible, though highly unlikely, that
this event represents a COVID-19 case with multiple false negative tests that occurred more
than 7 days after completion of the vaccination regimen, and more likely that it represents an
unrelated infectious process.
Among 3410 total cases of suspected but unconfirmed COVID-19 in the overall study
population, 1594 occurred in the vaccine group vs. 1816 in the placebo group. Suspected
COVID-19 cases that occurred within 7 days after any vaccination were 409 in the vaccine
group vs. 287 in the placebo group. It is possible that the imbalance in suspected COVID-19
cases occurring in the 7 days postvaccination represents vaccine reactogenicity with symptoms
that overlap with those of COVID-19. Overall though, these data do not raise a concern that
protocol-specified reporting of suspected, but unconfirmed COVID-19 cases could have masked
clinically significant adverse events that would not have otherwise been detected.
Subgroup Analyses
There were no specific safety concerns identified in subgroup analyses by age, race, ethnicity,
medical comorbidities, or prior SARS-CoV-2 infection, and occurrence of solicited, unsolicited,
and serious adverse events in these subgroups were generally consistent with the overall study
population.
Pregnancies
Female study participants of childbearing potential were screened for pregnancy prior to each
vaccination, with a positive test resulting in exclusion or discontinuation from study vaccination.
The study is collecting outcomes for all reported pregnancies that occur after vaccination, or
before vaccination and not detected by pre-vaccination screening tests. Twenty-three
pregnancies were reported through the data cut-off date of November 14, 2020 (12 vaccine, 11
placebo). Study vaccination occurred prior to the last menstrual period (LMP) in 5 participants (4
vaccine, 2 placebo), within 30 days after LMP in 8 participants (4 vaccine, 6 placebo), >30 days
after LMP in 1 participant (0 vaccine, 2 placebo), and date of LMP not known in 5 participants (4
vaccine, 1 placebo). Unsolicited AEs related to pregnancy include spontaneous abortion and
retained products of conception, both in the placebo group. Pregnancy outcomes are otherwise

42

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

unknown at this time.
Clinical Laboratory Evaluations
Clinical laboratory tests (hematology, chemistries) were assessed in study BNT162-01 and
C4591001 phase 1. The only common laboratory abnormality reported throughout the studies
was transient decreases in lymphocytes 1-3 days after Dose 1, which increased in frequency
with increasing dose, were mostly Grade 1-2, generally normalized at the next laboratory
assessment 6-8 days after Dose 1 and did not occur after Dose 2. Among C4591001 phase 1
participants who received the 30 µg dose of BNT162b2, transient decreases in lymphocytes
post-Dose 1 occurred in 5 of 12 participants 18-55 years of age and in 4 of 12 participants 65-85
years of age. These transient hematological changes were not associated with clinical
symptoms.
Safety Summary
The information provided by the Sponsor was adequate for review and to make conclusions
about the safety of BNT162b2 in the context of the proposed indication and population for
intended use under EUA. The number of participants in the phase 2/3 safety population
(N=37586; 18801 vaccine,18785 placebo) meets the expectations in FDA’s Guidance on
Development and Licensure of Vaccines to Prevent COVID-19 for efficacy, and the median
duration of at least 2 months follow-up after completion of the 2-dose primary vaccination series
meets the agency’s expectations in FDA’s Guidance on its Emergency Use Authorization for
Vaccines to Prevent COVID-19. The all-enrolled population contained more participants >16
years of age, regardless of duration of follow-up (43448; 21720 vaccine, 21728 placebo). The
demographic and baseline characteristics of the all-enrolled population and the safety
population were similar. Although the overall median duration of follow-up in the all-enrolled
population was less than 2 months, because the protocol was amended to include
subpopulations such as individuals with HIV and adolescents, the data from both populations
altogether provide a comprehensive summary of safety.
Local site reactions and systemic solicited events after vaccination were frequent and mostly
mild to moderate. The most common solicited adverse reactions were injection site reactions
(84.1%), fatigue (62.9%), headache (55.1%), muscle pain (38.3%), chills (31.9%), joint pain
(23.6%), fever (14.2%); severe adverse reactions occurred in 0.0% to 4.6% of participants, were
more frequent after Dose 2 than after Dose 1, and were generally less frequent in adults ≥55
years of age (≤2.8%) as compared to younger participants (≤4.6%). Among adverse events of
special interest, which could be possibly related to vaccine, lymphadenopathy was reported in
64 participants (0.3%): 54 (0.5%) in the younger (16 to 55 years) age group; 10 (0.1%) in the
older (>55 years) age group; and 6 in the placebo group. The average duration of these events
was approximately 10 days, with 11 events ongoing at the time of the data cutoff. Bell’s palsy
was reported by four vaccine participants. From Dose 1 through 1 month after Dose 2, there
were three reports of Bell’s palsy in the vaccine group and none in the placebo group. This
observed frequency of reported Bell’s palsy is consistent with the expected background rate in
the general population. There were no other notable patterns or numerical imbalances between
treatment groups for specific categories of non-serious adverse events (including other
neurologic, neuro-inflammatory, and thrombotic events) that would suggest a causal relationship
to BNT162b2 vaccine.
A total of six deaths occurred in the reporting period (2 deaths in the vaccine group, 4 in
placebo). In the vaccine group, one participant with baseline obesity and pre-existing
atherosclerosis died 3 days after Dose 1, and the other participant experienced cardiac arrest
43

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

60 days after Dose 2 and died 3 days later. Of the four deaths in the placebo arm, the cause
was unknown for two of them, and the other two participants died from hemorrhagic stroke
(n=1) and myocardial infarction (n=1), respectively; three deaths occurred in the older group
(>55 years of age). All deaths represent events that occur in the general population of the age
groups where they occurred, at a similar rate.
The frequency of non-fatal serious adverse events was low (<0.5%), without meaningful
imbalances between study arms. The most common SAEs in the vaccine arm which were
numerically higher than in the placebo arm were appendicitis (0.04%), acute myocardial
infarction (0.02%), and cerebrovascular accident (0.02%), and in the placebo arm numerically
higher than in the vaccine arm were pneumonia (0.03%), atrial fibrillation (0.02%), atrial
fibrillation (0.02%) and syncope (0.02%). Appendicitis was the most common SAE in the
vaccine arm. There were 12 participants with SAEs of appendicitis; 8 in the BNT162b2 group.
Of the 8 total appendicitis cases in the BNT162b2 group, 6 occurred in the younger (16 to 55
years) age group and 2 occurred in the older (>55 years) age group (one of the cases in the
older age group was perforated). One of the 6 participants with appendicitis in the younger age
group also had a peritoneal abscess. Cases of appendicitis in the vaccine group were not more
frequent than expected in the general population.

6. Sponsor’s Plans for Continuing Blinded, Placebo-Controlled Follow-Up
The Sponsor plans to offer vaccination to participants ≥16 years of age who originally received
placebo and who become eligible for receipt of BNT162b2 according to local or national
recommendations. The Sponsor proposes that these participants will be unblinded upon request
and will have the opportunity to receive BNT162b2 as part of the study. The Sponsor also
proposes that all placebo recipients ≥16 years of age will be offered BNT162b2 after
completing 6 months of follow-up after Dose 2, if they did not request and receive vaccine
previously. The participants will provide consent to receive vaccination and to continue followup. For these participants, the Sponsor plans a total follow up period of 18 months, with one visit
1-month postvaccination and subsequent phone contacts at 1, 6, and 18 months
postvaccination. Safety and efficacy monitoring during this period will include collection of AEs,
SAEs, and screening and diagnosing COVID-19 cases.

7. Pharmacovigilance Activities
Pfizer submitted a Pharmacovigilance Plan (PVP) to monitor safety concerns that could be
associated with Pfizer-BioNTech COVID-19 Vaccine. The Sponsor identified vaccine-associated
enhanced disease including vaccine-associated enhanced respiratory disease as an important
potential risk. Use in pregnancy and lactation and vaccine effectiveness are areas the Sponsor
identified as missing information. In addition to the safety concerns specified by the Sponsor,
FDA requested that the Sponsor update their PVP to include missing information in pediatric
participants less than 16 years of age.
The Sponsor will conduct both passive and active surveillance activities for continued vaccine
safety monitoring. Passive surveillance activities will include submitting spontaneous reports of
the following events to the Vaccine Adverse Event Reporting System (VAERS) within 15 days:
• Vaccine administration errors whether or not associated with an adverse event
• Serious adverse events (irrespective of attribution to vaccination)
• Cases of Multisystem Inflammatory Syndrome in children and adults
• Cases of COVID-19 that result in hospitalization or death

44

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

The Sponsor will also conduct periodic aggregate review of safety data and submit periodic
safety reports at monthly intervals. Each periodic safety report is required to contain descriptive
information which includes:
• A narrative summary and analysis of adverse events submitted during the reporting
interval, including interval and cumulative counts by age groups, special populations
(e.g., pregnant women), and adverse events of special interest
• Newly identified safety concerns in the interval
• Actions taken since the last report because of adverse experiences (e.g., changes made
to Vaccination Provider fact sheets, changes made to studies or studies initiated)
Sponsor studies will include completion of long-term follow-up from ongoing clinical trials as well
as the following three planned active surveillance studies. Of note, the Sponsor will submit plans
for a clinical study to assess safety and immunogenicity in pregnant women and has proposed
active surveillance studies designed to monitor vaccination during pregnancy within populations
expected to receive the vaccine under EUA.
• Study Protocol Number C4591008. The Sponsor proposes to survey 20,000 U.S. health
care workers enrolled in the COVID-19 HERO registry as well as health care workers in
certain participating health care facilities about adverse events of special interest, and
other clinically significant events of interest after vaccination with the Pfizer-BioNTech
COVID-19 Vaccine. Incidence rates of these events in this cohort will be compared to
expected rates. The respondents would receive follow-up surveys for a 30-month period.
• Study Protocol Number C4591011. This study is an active safety surveillance evaluation
conducted within the Department of Defense Health System Databases using data
derived from electronic health records and medical service claims among covered U.S.
military and their families. Rates of safety events of interest in vaccinated participants
will be compared to unvaccinated comparators. The study will be conducted for 30
months.
• Study Protocol Number C4591012. This study is an active surveillance study for adverse
events of special interest and other clinically significant events associated with the
Pfizer-BioNTech COVID-19 Vaccine using the Veteran’s Health Administration electronic
medical record database. Vaccinated participants will be compared to unvaccinated
participants or to recipients of seasonal influenza vaccine. The study will be conducted
for 30 months.
Currently, the primary objective of all three proposed studies above is descriptive, and the list of
adverse events in the studies has not been finalized. FDA will provide feedback on these
studies after further review.
Reporting to VAERS and Pfizer, Inc.
Providers administering the Pfizer-BioNTech COVID-19 Vaccine must report to VAERS (as
required by the National Childhood Vaccine Injury Act) and to Pfizer the following information
associated with the vaccine of which they become aware:
• Vaccine administration errors whether or not associated with an adverse event
• Serious adverse events (irrespective of attribution to vaccination)
• Cases of Multisystem Inflammatory Syndrome in children and adults
• Cases of COVID-19 that result in hospitalization or death

45

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Additional VAERS Reporting
An additional source of VAERS reports will be through a program administered by the CDC
known as v-safe. V-safe is a new smartphone-based opt-in program that uses text messaging
and web surveys from CDC to check in with vaccine recipients for health problems following
COVID-19 vaccination. The system also will provide telephone follow-up to anyone who reports
medically significant (important) adverse events. Responses indicating missed work, inability to
do normal daily activities, or that the recipient received care from a doctor or other healthcare
professional will trigger the VAERS Call Center to reach out to the participant and collect
information for a VAERS report, if appropriate.

8. Benefit/Risk Assessment in the Context of Proposed Indication and Use Under EUA
8.1. Known Benefits
The known benefits among recipients of the proposed vaccine relative to placebo are:




Reduction in the risk of confirmed COVID-19 occurring at least 7 days after Dose 2
Reduction in the risk of confirmed COVID-19 after Dose 1 and before Dose 2
Reduction in the risk of confirmed severe COVID-19 any time after Dose 1

The protocol-specified 2-dose vaccination regimen was highly effective in preventing PCRconfirmed COVID-19 occurring at least 7 days after completion of the vaccination regimen.
Additional primary efficacy analyses in the all-available efficacy population, including
participants who had protocol violations, showed consistency with outcomes in the primary
analysis population. Efficacy findings were also consistent across various subgroups, including
racial and ethnic minorities, participants aged 65 years and older, and those with one or more of
the following conditions: obesity, diabetes, hypertension, and chronic cardiopulmonary
diseases. While limited, available data suggest that individuals with previous SARS-CoV-2
infection can be at risk of COVID-19 (i.e., re-infection) and may benefit from vaccination.
Among participants with no evidence of COVID-19 prior to vaccination, the vaccine was
effective in reducing the risk of COVID-19 and severe COVID-19 after Dose 1. Fewer severe
cases were also observed in the vaccine recipients relative to recipients of placebo during the
follow up period after Dose 1. The findings post Dose 1, from a post-hoc analysis, cannot be the
basis to assess the potential efficacy of the vaccine when administered as a single dose
because the period of observation is limited by the fact that most participants received a second
dose three weeks after the first one.

8.2. Unknown Benefits/Data Gaps
Duration of protection
As the interim and final analyses have a limited length of follow-up, it is not possible to assess
sustained efficacy over a period longer than 2 months.
Effectiveness in certain populations at high-risk of severe COVID-19
Although the proportion of participants at high risk of severe COVID-19 is adequate for the
overall evaluation of safety in the available follow-up period, the subset of certain groups such
as immunocompromised individuals (e.g., those with HIV/AIDS) is too small to evaluate efficacy
outcomes.

46

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Effectiveness in individuals previously infected with SARS-CoV-2
The primary endpoint was evaluated in individuals without prior evidence of COVID-19 disease,
and very few cases of confirmed COVID-19 occurred among participants with evidence of
infection prior to vaccination (although more cases occurred in the placebo group compared
with the vaccine group). Therefore, available data are insufficient to make conclusions about
benefit in individuals with prior SARS-CoV-2 infection. However, available data, while limited, do
suggest that previously infected individuals can be at risk of COVID-19 (i.e., reinfection) and
could benefit from vaccination.
Effectiveness in pediatric populations
The representation of pediatric participants in the study population is too limited to adequately
evaluate efficacy in pediatric age groups younger than 16 years. No efficacy data are available
from participants ages 15 years and younger. Although adolescents 16 to 17 years of age were
included in the overall efficacy analysis, only one confirmed COVID-19 case was reported in this
age group. However, it is biologically reasonable to extrapolate that effectiveness in ages 16 to
17 years would be similar to effectiveness in younger adults. Efficacy surveillance continued
beyond November 14, 2020, and the Sponsor has represented that additional data will be
provided in a BLA.
Future vaccine effectiveness as influenced by characteristics of the pandemic, changes
in the virus, and/or potential effects of co-infections
The study enrollment and follow-up occurred during the period of July 27 to November 14, 2020,
in various geographical locations. The evolution of the pandemic characteristics, such as
increased attack rates, increased exposure of subpopulations, as well as potential changes in
the virus infectivity, antigenically significant mutations to the S protein, and/or the effect of coinfections may potentially limit the generalizability of the efficacy conclusions over time.
Continued evaluation of vaccine effectiveness following issuance of an EUA and/or licensure
will be critical to address these uncertainties.
Vaccine effectiveness against asymptomatic infection
Data are limited to assess the effect of the vaccine against asymptomatic infection as measured
by detection of the virus and/or detection of antibodies against non-vaccine antigens that would
indicate infection rather than an immune response induced by the vaccine. Additional
evaluations will be needed to assess the effect of the vaccine in preventing asymptomatic
infection, including data from clinical trials and from the vaccine’s use post-authorization.
Vaccine effectiveness against long-term effects of COVID-19 disease
COVID-19 disease may have long-term effects on certain organs, and at present it is not
possible to assess whether the vaccine will have an impact on specific long-term sequelae of
COVID-19 disease in individuals who are infected despite vaccination. Demonstrated high
efficacy against symptomatic COVID-19 should translate to overall prevention of COVID-19related sequelae in vaccinated populations, though it is possible that asymptomatic infections
may not be prevented as effectively as symptomatic infections and may be associated with
sequelae that are either late-onset or undetected at the time of infection (e.g., myocarditis).
Additional evaluations will be needed to assess the effect of the vaccine in preventing long-term
effects of COVID-19, including data from clinical trials and from the vaccine’s use postauthorization.

47

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

Vaccine effectiveness against mortality
A larger number of individuals at high risk of COVID-19 and higher attack rates would be
needed to confirm efficacy of the vaccine against mortality. However, non-COVID vaccines
(e.g., influenza) that are efficacious against disease have also been shown to prevent diseaseassociated death.11-14 Benefits in preventing death should be evaluated in large observational
studies following authorization.
Vaccine effectiveness against transmission of SARS-CoV-2
Data are limited to assess the effect of the vaccine against transmission of SARS-CoV-2 from
individuals who are infected despite vaccination. Demonstrated high efficacy against
symptomatic COVID-19 may translate to overall prevention of transmission in populations with
high enough vaccine uptake, though it is possible that if efficacy against asymptomatic infection
were lower than efficacy against symptomatic infection, asymptomatic cases in combination with
reduced mask-wearing and social distancing could result in significant continued transmission.
Additional evaluations including data from clinical trials and from vaccine use post-authorization
will be needed to assess the effect of the vaccine in preventing virus shedding and
transmission, in particular in individuals with asymptomatic infection.

8.3. Known Risks
The vaccine has been shown to elicit increased local and systemic adverse reactions as
compared to those in the placebo arm, usually lasting a few days. The most common solicited
adverse reactions were injection site reactions (84.1%), fatigue (62.9%), headache (55.1%),
muscle pain (38.3%), chills (31.9%), joint pain (23.6%), fever (14.2%). Adverse reactions
characterized as reactogenicity were generally mild to moderate. The number of subjects
reporting hypersensitivity-related adverse events was numerically higher in the vaccine group
compared with the placebo group (137 [0.63%] vs. 111 [0.51%]). Severe adverse reactions
occurred in 0.0-4.6% of participants, were more frequent after Dose 2 than after Dose 1 and
were generally less frequent in older adults (>55 years of age) (<2.8%) as compared to younger
participants (≤4.6%). Among reported unsolicited adverse events, lymphadenopathy occurred
much more frequently in the vaccine group than the placebo group and is plausibly related to
vaccination.
Serious adverse events, while uncommon (<1.0%), represented medical events that occur in
the general population at similar frequency as observed in the study. Three SAEs in the
BNT162b2 group were considered related by the investigator, but not the Sponsor, as related to
study vaccination: shoulder injury (n=1), ventricular arrhythmia in a participant with known
cardiac conditions (n=1), and lymphadenopathy temporally related following vaccination (n=1).
We considered two of the events as possibly related to vaccine: the shoulder injury possibly due
to vaccine administration or the vaccine itself and lymphadenopathy. Lymphadenopathy was
temporally associated and biologically plausible.
No specific safety concerns were identified in subgroup analyses by age, race, ethnicity,
medical comorbidities, or prior SARS-CoV-2 infection. Although participants 16 to 17 years of
age were enrolled in the phase 3 trial, safety data for this age group is limited. However,
available data are consistent with the safety profile in the adult population, and it is biologically
reasonable to extrapolate the greater safety experience in adults, in particular younger adults, to
the oldest pediatric age group of 16 to 17 years.

48

Pfizer-BioNTech COVID-19 Vaccine
VRBPAC Briefing Document

8.4. Unknown Risks/Data Gaps
Safety in certain subpopulations
There are currently insufficient data to make conclusions about the safety of the vaccine in
subpopulations such as children less than 16 years of age, pregnant and lactating individuals,
and immunocompromised individuals.
Adverse reactions that are very uncommon or that require longer follow-up to be
detected
Following authorization of the vaccine, use in large numbers of individuals may reveal
additional, potentially less frequent and/or more serious adverse events not detected in the trial
safety population of nearly 44,000 participants over the period of follow up at this time. Active
and passive safety surveillance will continue during the post authorization period to detect new
safety signals.
A numerically greater number of appendicitis cases occurred in the vaccine group but occurred
no more frequently than expected in the given age groups and do not raise a clear concern at
this time for a causal relationship to study vaccination. Although the safety database revealed
an imbalance of cases of Bell’s palsy (4 in the vaccine group and none in the placebo group),
causal relationship is less certain because the number of cases was small and not more
frequent than expected in the general population. Further signal detection efforts for these
adverse events will be informative with more widespread use of the vaccine.
Vaccine-enhanced disease
Available data do not indicate a risk of vaccine-enhanced disease, and conversely suggest
effectiveness against severe disease within the available follow-up period. However, risk of
vaccine-enhanced disease over time, potentially associated with waning immunity, remains
unknown and needs to be evaluated further in ongoing clinical trials and in observational studies
that could be conducted following authorization and/or licensure.

9. References
1.
2.

3.

4.

5.
6.

Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in
China, 2019. The New England journal of medicine. 2020;382(8):727-733.
Coronaviridae Study Group of the International Committee on Taxonomy of V. The
species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV
and naming it SARS-CoV-2.
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel
coronavirus: implications for virus origins and receptor binding. Lancet (London,
England). 2020;395(10224):565-574.
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on
ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell.
2020;181(2):271-280.e278.
Federal Food, Drug and Cosmetic Act, 21 U.S.C. § 360bbb–3 and 360bbb-3b. (2011).
FDA. Guidance for Industry: Development and Licensure of Vaccines to Prevent COVID19. June 2020. https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/development-and-licensure-vaccines-prevent-covid-19.

49



Parole chiave correlate